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TECHNICAL MEMORANDUM X-53292

PROGRESS REPORT NO. 7
on Studies in the Fields of
SPACE FLIGHT AND GUIDANCE THEORY

SUMMARY

The progress reports of NASA-sponsored studies in the
areas of space flight and guldance theory are presented.
The studies are carried on by several universities and
industrial companies. This progress report covers the
period from July 23, 1964 to April 1, 1965. The contracts
are technically supervised by personnel of the Astrodynamics
and Guidance Theory Division, Aero-Astrodynamics ILaboratory,
Marshall Space Flight Center.

INTRODUCTION

This report contains fourteen papers, the subject
matter of which lies in the areas of space flight and guidance
theory. These papers were written by investigators employed
at agencilies under contract to MSFC.

This report is the seventh of the "Progress Reports"
and covers the period from July 23, 1964 to April 1, 1965.
Information given in the earlier progress reports will not
be repeated here.

The agencies contributing and their fields of major
interest are:



Field of Interest Agency

Optimization Theory Vanderbilt University
(Calculus of Variations)| Auburn University
Analytical Mechanics Associates

North American Aviation, Inc.

Orbital Transfer United Aircraft Corporation

Control Theory Honeywell, Inc.

University of Wilsconsin

Celestial Mechanics Hayes International Corporation

Low Thrust Trajectories | Grumman Aircraft Engineering Corp

Large Computer Georgia Institufe of Technology
Exploitation Southern Illinois University

The objective of this introduction is to briefly review
the contributions of each agency.

The first paper by Dr. M. Boyce and Mr. J. Linnstaedter
of Vanderbilt University develops a multiplier rule and ana-
logues of the Weierstrass and Clebsch conditions for a multi-
stage Bolza-Mayer calculus of variations problem. The number
of stages 1s fixed, but partition points defining stage boun-
daries are variable. Discontinuities are allowed in variables
and constraint functions at partition points. The constraints
include finite equations and inequalities, as well as differ-
ential equations, all of which involve control variables. An
appendix to the report summarizes some of the results obtained
by C. H. Denbow, as modified by R. W. Hunt, for a generalized
Bolza problem,

The second paper by Joe W. Reece and Grady R. Harmon 1is
an application of the necessary conditions resulting from
the Pontryagin Maximum Principle to a particular model for
the simulation of reentry trajectories. The paper is a good
example of the detailed analysis needed to achieve a workable
computational procedure, but the method used to solve for the

boundary conditions is yet to be incorporated into the
procedure.
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The third paper by Henry J. Kelley and Walter F. Denham
derives the necessary conditions for optimal guidance poly-
nomial approximations by an ensemble averaging approach.

The merits of this approach can better be evaluated when a
computational scheme utilizing the derived necessary condi-
tions is outlined and applied to a trajectory analysis
problem,

The fourth paper by Gary A. McCue and David F. Bender
of North American Aviation presents a method for the numeri-
cal determination of optimum two-impulse orbital transfers
between inclined elliptical orbits. A numerical optimization
technique termed '"adaptive steepest descent" is shown to
overcome convergence difficulties. Results are obtained for
"almost target" coplanar elliptical orbits. Extensions are
then developed for strongly inclined orbits.

The fifth paper by David F. Bender and Gary A. McCue
of North American Aviation presents numerical and analytical
results concerning optimum one-impulse orbital transfer
maneuvers. Approximate expressions for the minima of the
one-impulse maneuvers are derived. Numerical comparisons
of one-impulse transfers and corresponding optimum two-impulse
transfers are made. These comparisons show that for a small
range of shapes, one-impulse fransfers are optimal.

The sixth paper by Frank Gobetz of United Aircraft
Corporation presents a study of the minimum fuel transfer
and rendezvous between neighboring low-eccentricity orbits
by power-limited rockets. The equations of motion are linear-
ized in three separate coordinate systems, given a variational
treatment, and solved in closed form. Both performance type
and guidance type of solutions are presented in each of the
three systems. By choosing an intermediate orbit for the
reference orbit in an application of the linear theory to
interplanetary transfer, results for Earth-Venus and Earth-
Mars transfers are found to agree well with exact results.

The seventh paper, submitted by E. B. Lee of Honeywell,
is entitled, "An Approximation to Linear Bounded Phase Coordi-
nate Control Problems.'" The technique employs a non-negative
"penalty function" which is small for state variables satis-
fying the given constraints, and large outside of this con-
straint set. An optimal control problem is solved where, as
a terminal condition, the integral of the penalty function
is bounded by a small constraint, thereby limiting the
excursions of the state variables outside of the constraint
set.



The eighth paper by C. C. Conley of the University of
Wisconsin studies the solutions of the restricted three-body
problem near those equilibrium points which are collinear
with the two positive masses. This is done to gain insight
toward the development of an analytic proof and classification
of the periodic orbits that pass near these equilibrium points,
which have been discovered numerically by M. Davidson, and also
to hopefully gain insight into the nature of solutions of the
restricted three-body problem in general. The gqualiltative
observations that are made are all deduced from the linearized
equations.

The ninth paper, by A. A. Nafoosi and H. Passmore of
Hayes International Corporation, considers an approach to
the analytical solution of the minimum fuel trajectory
integration problem through the Hamilton-Jacobi theory of
canonical transformations. This method replaces the ordinary
differential equations of motion with the Hamilton-Jacobil
partial differential equations. The method of separation of
varlables and Jacobi's method for solving partial differential
equations are discussed and applied to progressively more
realistic approximations to the minimum fuel trajectory problem.
This approach is found to be of limited usefulness unless a
more appropriate transformation of the coordinates can be found
that would produce a more easily solvable Hamilton-Jacobl
equation.

The tenth paper, by Harry Passmore, also applies methods
of celestial mechanics to the problem of deriving an analytical
solution to the minimum fuel trajectory problem. By consider-
ing the )\ variables as coordinates of a fictitious body rela-
tive to the vehicle, and transforming the A equations to
equations relative to the same center of attraction as the
vehicle, equations analogous to the.three-body equations are
obtained. These equations are transformed to canonical
equations and solved by Delaunay procedures. The solutilon
obtained is a first order approximation expected to be most
applicable to the many-orbit low-thrust problem rather than
interplanetary transfer or high-thrust trajectory integratilon.

The eleventh paper, by Hans K. Hinz, Robert McGill, and
Gerald Taylor, and the twelfth paper by Paul Kenneth and
Gerald E. Taylor, relate to their numerical experience with
the generalized Newton-Raphson method reported on 1n Progress
Report No. 5, as applled to the low thrust two-point boundary
value problem. Equations of motion in both applications are
formulated in two-dimensional polar coordinates. One appli-
cation concerns geocentric clrcular orbital transfer. Simple




equations are given for first values used to begin the
iteration. Successful results have been achieved for tra-
Jjectories of up to twenty-one revolutions and correct to

four significant figures with convergence deteriorating past
this point. Greater accuracy may be expected by using
multiple precision arithmetic and better numerical integration
methods.

The second application of the numerical method concerns
the interplanetary trajectory with bounded thrust magnitude
and thrust angle used as control variables. Transit time is
specified and mass is maximized. Again, convergence has been
obtained to an accuracy of four significant figures with
further possibilities for improvement by using better
numerical methods.

It seems the Generalized Newton-Raphson Method shows
value for meeting specified end-conditions for the sensitive
low thrust trajectory optimization problem, although the
geocentric spiral trajectory sensitivity may still offer
difficulty.

The thirteenth paper by I. E. Perlin, J. H. Mackay, et al.,
contalns a very thorough examination of the many different
aspects of multivariable function approximation by least squares
fechniques. It also contains some illuminating examples of the
mathematical techniques which are used for the selection of a
few efficient estimation variables from a larger set.

The fourteenth paper by Robert Silber describes a
procedure for numerically computing the coefficients for the
Taylor's series expansion of the general solution of a normal
system of first order, ordinary differential equations in terms
of the time on any solution and the initial values of the vari-
ables and time for that solution. The method has appeared
previously in NASA TM X-53059 as part of a more involved method
to compute a guidance type of solution for a system of differ-
ential equations. The present paper singles out the first
mentioned solution as possibly deserving explicit mention, and
brings out the mathematical considerations that justify this
procedure and that are necessary for one to make reasonable
applications of it.
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NECESSARY CONDITIONS FOR A MULTISTAGE
BOLZA-MAYER PROBLEM INVOLVING CONTROL VARIABLES AND

HAVING INEQUALITY AND FINITE EQUATION CONSTRAINTS

By M. G. Boyce and J. L. Linnstaedter

SUMMARY
5305/

A multiplier rule and analogues of the Weierstrass and Clebsch con-
ditions are developed for a multistage Bolza-Mayer calculus of variations
problem. The number of stages is fixed, but partition points defining

/ stage boundaries are variable. Discontinuities are allowed in variables
i and constraint functions at partition points. The constraints include
f finite equations and inequalities, as well as differential equations, all
g of which involve control variables. 5
\\ s An Appendix summarizes some of the results obtained by C. H. Denbow,
" as modified by R. W. Hunt, for a generalized Bolza problem. The Appen-

dix is independent of the rest of the paper.




NOTATION

Ranges of Subscripts and Superscripts

a=1,...,p e, J=1,...,m a,mM=1,...,N = ntmtr
b=1,...,p-1 g =1, ,a fg,s =1, ,M = n+qg+r
c =0,...,s i=1,...,n Yy=1,...,K = smtr
d,h = 1,...,r k=1,...,s = 0,...,K = stmtr

Intervals, Regions and Arcs

I interval t <t < t_.
o— - P

Ia subinterval between partition points ta-l and ta.
Ra open connected set in (t,x,y) space.
) - +
S open connected set in (to,...,tp,x(to),x(tl),x(tl),...,x(tp)) space.
!
Ra open connected set in (t,z,Z) space.
1 A - +
S open connected set 1n(to,...,tp,z(to),z(tl),z(tl),...,z(tp)) space.
Ca admissible sub-arc.
E admissible arc.
1
Ca admissible sub-arc for transformed and Appendix problems.
1
E admissible arc for transformed and Appendix problems.

Functions and Variables

t independent variable.

to,...,tp partition set with 1<t < .l < tp.

b'd state variable vector (Xl,...,xn).

y control variable vector (yl,...,ym).

L? differential equation functions, t in Ia'
MZ finite equation functions, t in Ia'



Nh inequality constraint functions, t in Ia'

Li differential equation functions, t in TIj Li=L?’ t in Ia'
M, finite equation functions, t in I; Mg=MZ, t in T .

Nh inequality constraint functions, t in Ij Nh=Ni, t in Ia'
Jk end and intermediate point constraint functions.

Jo function to be minimized.

b multiplier vector (Al,...,kn) for differential equations.
W multiplier vector (wl,...,ya)'for finite equations.

Y multiplier vector (yi,.f.,wé) for inequality constraints.
Da,Dg,A,B diagonal matrices.

x(tb),z(tb) left hand limit at t, .

+ +
x(tb),z(tb) right hand limit at t

b
dib’qib amount of discontinuity at tb.

c?, cz' integration constants in multiplier rules.

z vector (zl,...,z ) for transformed and Appendix problems.
¢2 differential equation functions for z-system problems.

fy end and intermediate conditions for z-system.

fo function to be minimized for z-system.

}\ﬁ multipliers for z-system.

F Lagrangian function.

H generalized Hamiltonian function.

) Welerstrass E-function.

s constant multipliers in transversality equations.

7,0 Clebsch condition variables.

Z,Y Weierstrass condition variables.
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INTRODUCTION

In 1937 C. H. Denbow {reference 1) formulated a multistage genera-
lization of the Bolza problem and established necessary and sufficient
conditions for it. His method involved transforming the multistage
problem into a standard problem of Bolza by a transformation due to
W. T. Reid and L. M. Graves., The transformation requires that the num=-
ber of stages be fixed and the staging points be distinct. By stages
we refer to the subintervals into which the range of the independent
variable is partitioned by intermediate points involved in the constraints.

R. W. Hunt (2) has applied Denbow's methods to a Mayer form of the
multistage problem in which discontinuities are permitted in the vari- |
ables and constraints at staging points. He obtained the first three 1

\
necessary conditions. We have summarized his results in the Appendix, |
with some minor modifications.

In this paper we further extend the work of Denbow and Hunt to in-
clude control variables, finite equation conditions, and inequality con-
straints. Following Hunt, we use the Mayer formulation, which Bliss (3,
P. 190) has shown equivalent to the Bolza form for one stage problems.
Also we have used differential constraints in normal form, a form di-
rectly applicable to trajectory optimization. Hestenes (4, pp. 4-6) has
shown that the one stage problem in this form with control variables is
reducible to the usual form of the Bolza problem and vice-versa. The
method of Valentine (5) is used to transform the inequality constraints

into differential equations.
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FORMULATION OF THE PROBLEM

Let t be the independent variable. Define a set of variables

(tgs «--) tp) contained in the range of t +to be a partition set if

and only if to < tl < ... < tp. Call the elements of the partition

set partition points. Let I denote the interval to <t < tp’ and

let Ia denote the sub-interval ta <t < ta for a=1, ..., p -1

-1

and t <t <t for a = p.
a-1 —  — "a

-1
Let x(t) denote the set of functions (xl(t), ey Xn(t)). For
each i, i =1, ..., n, assume xi(t) to be continuous on T except

possibly at partition points t b=1, ..., p -1, where finite left

b)
- +

and right limits exist; denote these limits by xi(tb) and Xi(tb),

respectively. The amount of discontinuity of each member of x(t) at

each partition point will be assumed known, and we write
+ -
xi(tb) - xi(tb) - dib = 0,

+
with each di a known constant. -Also we let xi(tb) = xi(tb). Thus

b

xi(t) is continuous at t_ if and only if d, = O.

b b

Let y(t) denote the set (yl(t), ceny ym(t)), where yj(t) is
piecewise continuous on I, j =1, ..., m, finite discontinuities being
allowed between, as well as at, partition points. In the formulation of
the problem the yj(t) will occur only as undifferentiated variables

and will not occur in the function to be minimized nor in the end and

intermediate point constraints. Such variables are called control vari-

ables, while the xi(t) are called state variables.
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Differentiation with respect to t will be indicated by a super-
posed dot and partial derivatives by subscript variables. Each subscript
or superscript index will always have the range specified when first
used (and given in the table of notations), and repeated indices in a
product will indicate summation unless the contrary is stated.

The problem will be to find in a class of admissible arcs

x(t), y(t), (to, ceey tp), t, St < £

which satisfy differential eguations

. a ) .
X, = Li(t,x,y), tinI, a=1, ...,p, i=1,...,n,

Tinite equations

a

Mg(t,x,y) =0, g=1, ..., a,
inequalities

Nﬁ(t,x,y) > 0, h=1, ..., r, q+r<m,

and end and intermediate point conditions

T (b s vey b, x(8), x(2]), x(ti), el X(tp)) = 0,

k' o P

k=1, ..., s < (n + l)(p + l),

x, (t7) - x, () ~d,, =0 b=1, .., p -1
it b i ib M > s >

one that will minimize

T (bgr oes by x(8), x(6]), x(t]), oony x(5)).

13



In order to state precisely the properties of the functions in-
volved in the problem, let Ra be an open connected set in the m+n+l
dimensional (t,x,y) space whose proJjection on the t-axis contains the
interval Ia’ and let S Dbe an open connected set in the 2np + p + 1

dimensional space of points

(to, cees tp, x(to), X(ti), x(ti), cer, X(tp)).

The functions L?, MZ, Ni are assumed continuous with continuous par-

tial derivatives through those of third order in Ra’ and Jo’ Jk are

to have such continuity properties in S. For each a, the matrix

M 0
B

a a
Nhyj g

is assumed of rank gq + r in Ra’ where Di igs an r by r diagonal

matrix with Ni, ey Ni as diagonal elements. The matrix

J J J J J - J +y J , ¢=0,...,s,
et ety ctp cxi(to) cxi(tb) cxi(tb) cxi(tp)
is assumed of rank s +1 in S.
An admissible set is a set (t,x,y) in R, for some
a=1, ..., p. An admissible sub=-arc Ca is a set of functions

x(t), y(t), t on I, with each (t,x,y) admissible, and such that
x(t) is continuous and x(t), y(t) are piecewise continuous on I

An admissible arc 1s a partition set (to, ..., t_) together with a set
b

14




of admissible sub-arcs Ca’ a=1, ..., p, such that the set

(g weos Ty x(t), x(£]), x(tp, coos x(8))) is in S

THE MULTIPLIER RULE

An admissible arc E for which

Jk(to, cer, tp, x(to), x(ti), x(tI), cee, x(tp)) =0,

+ -
x; (t) - x; (t) - 4y = 95

is said to satisfy the multiplier rule if there exists a function

a a a
H(thJY;)*;M;V) = AiLi - P’gMg + VhNh,

with multipliers ki(t),}yg(t),'vh(t) continuous except possibly at

partition points or corners of E, where finite left and right limits

exist, such that for each t in Ia’ a=1, ..., p,
A t a a a a
= - = 7 = = >
1) A, J{h Hxidt * ey, Hyj 0, %; =1L, M =0, Ny >0,
a-1

and such that the transversality matrix

H(t) H(tg)-H(tg) () A (8 —Ai(t;) + e A ()
(2)

J J J J J
cto ctb ctp cxi(to)

T -
cxi(tb) cxi(t

b) chi(tp)

is of rank s + 1. The multipliers vh are zero when Nh > 0. Every

minimizing arc FE must satisfy the multiplier rule.

15



It may be noted that the constants c? are the initial wvalues

X, ()

a-l)’ respectively, of the multipliers Ai for the several stages.

Corollary. Between corners of a minimizing arc E the equations

x, = Hy s A, =-H , H =0, H =0, ¥H,6 =0 (not summed)

hold and hence also

To prove the multiplier rule we transform the problem into a Den-
bow problem of the type treated by Hunt and summarized in the Appendix.

Let z(t) denote the set (zl(t), cee, ZN(t)), N=n+m+ r, where

t

t
zi(t) = xi(t), zn+j(t) =“/ﬁ yj(t)dt, zn+m+h(t) :~{ﬁ'Jﬁh(t,x(t),y(t))dt;

t
o

or, equivalently,

() =V (t,x(t),y(t))

() 2y (8) =% (0), 2 (0) =y (0), 2, W

with initial conditions Zn+j(to) = Zn+m+h(to) = 0. ©Note that for ad-

missible arcs 2z . and 2z are continuous on I. In the defini-
n+Jj n+mth

tion of Zn+m+h the superscript a has been omitted from Nh' Where

this is done, it is to be understood that Nh(t,x,y) = Ni(t,x,y) when
t 1is in Ia.- Similar usage applies to Li and Mg'

Denote the differential equations for the transformed problem by

= «
()-L) ¢p(t,Z,Z)=O, p=ly cee,ntqgtr=»M tin Ia,

16




a _ . a . .
¢i =2, - Li(t’zl""’zn’zn+l"'"Zn+m)
a . .
(5) ¢n+g = Mz(t’zl""’Zn’zn+l""’zn+m)
a 2 - a . .
¢n+q+h =4 Nh(tle""’zn’zn+l""’Zn+m)'

Let the conditions on end and intermediate points be denoted by

(6) fr(to,...,tp,z(to),z(ti),z(ti),...,z(tp))=0,,/ =1,...,s+mtr=K,

where

£ = Jk(to,...,t 2

- - +
. . l(to),...,zn(to),zl(t ),...,zn(tl),zl(tl),...,

1

z (ti),...,zl(tp),...,zn(tp)),

fs+m+h = Zn+m+h(to)’

plus the following difference relations at intermediate points,

+ -
(7) zmﬁ%) - 2, (t)) - 4 =0 «=1, ..., N

Note that QKb =0 for dd=n+1, ..., N, since Zn+j and 2 mth

are continuous. Let the transform of the function Jo be denoted by

r .
o

Fach point (t,xl,...,xn,yl;...,ym) of Ra transforms into a

point (t,zl,...,z »Z

t
LR ERRRYY: ). Let R, denote the open set in

n-+m

(2N+1)-dimensional (t,z,%) space whose restriction to the coordinates

17



(t,zl,...,z ) is the transform of R_, the other coordi-

a1 2
1
nates of Ra having unlimited range, - 00 to +00.
Let S denote an open set in the 2Np + p + 1 dimensional space

. -\ ..t .o
of points (to,...,tl,z(to),z(tl),z(tl),...,z(tp)) whose restriction to

- - + +
(to,...,tl,zl(to),...,zn(to),zl(tl),...,zn(tl),zl(tl),...,zn(tl),...,
zl(tp),...,zn(tp)) is the transform of S and which includes zero
values for zn+1(to),...,zN(to).

An admissible set for the transformed problem will be a set

1 1
(t,z,2) in R~ for some a. An admissible sub-arc C_ will be a set

of functions z(t) on I_ having each (t,z,2) admissible, with
z(t) continuous and z(t) piecewise continuous on Ia. An admissible

arc will be a partition set (to,...,tp) together with a set of admis-

1 !
sible sub-arcs Ca whose end and intermediate points lie in S .

It follows from-the assumptions about the functions L?, MZ, Ni
in R and J_, dJ
a o

. . . a .
x In S that the functions qﬁ and fo’ f? will

1
have continuous partial derivatives to the third order in regions Ra

1
and S , respectively. The matrix " %22 “ can be readily verified to be

of rank n+ m+ r for t in Ia since it can be written

I - Liy 0
J
a
0 M
. 0
8y |
a a
0 - D
Nhyj 2

where I 1is an n by n identity matrix and DZ is an r by r diagonal

18




matrix with diagonal elements 2% .,2%2 . Also the matrix

n+m+l’ " N

£ iy £ £ .y f
»Pt Pty AL pz(to) pz(tb) Pz (t

+ f , p=0,1,...,K,
b I TICIOR R

b
is found to be of rank K + 1.

The assumptions made in the formulation of the problem in the Ap-
pendix are thus established, and hence the theorems of the Appendix can

be applied. From equations (5) the required function F Dbecomes

o _ o _ a a 2 _ a
F(t,2,2, ) = A, (2, ~ L) M v (o -0,
where the arguments of L?, MZ, Ni are
(t’zl"'"Zn’zn+l""’zn+m)’ tinI, a=1, ,D,

and the multipliers li(t),/ug(t), Vv

h(t) are continuous except possibly

at corners or partition points, at which right and left limits exist.
Now define a function H whose arguments are

(t,z o7

29 5e .,Zn+m,1,mgv) as follows:

Z ..
n’ n+l’

H=AL - M + v,
11 g8
The relationship between ¥ and H 1is given by the equation

= Az, + 7 -
F=Xdz v A2 o - B

and from equations (A-5) of the Appendix

t
X = -/ H aw+ &
1 Z 1

ta-l i

19



Z .
n+j

- 2y a (not summed).

i = c
h n+mth n+m+h

Furthermore, the multiplier rule given in the Appendix establishes the
existence of constants €os not all zero, satisfying the transversality

conditions:

t
> 2 . fe) _
®eet +[%iz 22 imih T Znegs ] = 0,
n+]J
+
2 tb
+ 2 + Z Z . =
ec ct [Rl i 2thn+m+h Zn+j 5 ] - 0,
b n+ 14t
b
e.J +[A.i.+2uz2 -2 H. ] - o,
+m+ +
c ctp i'i h n+mth nt+j zn+j £
to
eJdez (t )~ [Ai] = 0,
i‘*7o
to
- - H. I = O
vl ,
57 Zn+j
to .
Cs4m+h " [27h2n+m+h] = 0, (not summed),
%
e (J + +J _)_[x] - o,
c czi(tb) czi(tb) ol tg

%
'['Hi ]t—=o’
n+tj" b

t
i [2’%Zn+m+th = 0, (not summed),

T v T +




- [Ewﬁzn+m+ﬁ]t = 0, (not summed).

Recalling the equations = H2 =C
foregoing equations that the H2

a
and zero at t_, we have c¢

i

. a
- 2141Zn+m+h = Ch+m+h

at partition points and zero at. tp; hence

and h. Since 22

It now follows that
. -2
Ai%3 t e imth

and the first p + 1

M
(¢]
d.
<4
—~
By
@]
li

(not summed), and the - 2¢/7

n+m+h ~ h’

4

n+J nrd
n+j

N+ =0 for each a and j.

h%n+m+h

cﬂ+m+h = 0 for each

N, this implies that y%

- z H.
+
n+j Zn+j

transversality equations become

Thus we have (p+l)(n+tm+r+l) transversality equations; but, since

and observing from the

Similarly,

= > .
0O when Nh 0]

are continuous at partition points

are continuous



e = 0 for p>s (i.e., the last mt+r of the e's are zero), these may
be reduced to only (p+l)(n+l) transversality equations. Changing vari-
ables to those of the original problem and writing this reduced set of
transversality equations in equivalent matrix form completes the proof
of the multiplier rule.

An extremal is an admissible arc and set of multipliers satisfying
equations (1) and such that its functions x(t), y(t), )Kt),}p(t), Y (t)
have continuous first derivatives except possibly at partition points,

where finite left and right limits exist. An extremal, or sub=-arc of an

extremal, is called non-singular if the determinant

HY Y ng Nhy ©
J € J J
M 0 0 0
8Ye
N 0 0 A
hye
0 0 A B

is different from zero along it, A and B being diagonal matrices

with diagonal elements Jﬁl, ey Jﬁr and YV c ey y%, respectively.

1
To define normal arcs, let the transversality conditions be used in

equation form involving constant multipliers €, s e es, as in the

proof given for the multiplier rule. An admissible arc with a set of

multipliers }i,/pg, Vh’ e, satisfying the multiplier rule is then

called normal if e, = 1. For this value of e, the multipliers are
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unique. On putting e, = 1 1in the transversality equations the follow-

ing equivalent matrix form is obtained.

For a normal minimizing arc the transversality matrix

+ -
H(to)+JO£ H(tb)-H(tb)+Jot -H(tp)+Jot -li(to)+Jox,(t )
o) b D i o

Tt Tt Tt ka.(t )
o) b P i’ o

+ -
_li (tb )+lj_ (tb?+JOXi (tg)*‘JOXi (t-t-)> )\1 (tp)+JOXi (tp)

+
Tk (51

; (b kxi(t;) kx. (t )

1 P

is of rank s.

Since the matrix is of order s + 1 by (n+l)(p+l), the require-
ment that the rank be s imposes (n+l)(p+l) - s conditions. This is
one more condition than is imposed by the multiplier rule as first
stated, the condition there being sufficient to determine the multipliers

only up to an arbitrary proportiocnality factor.

WEIERSTRASS CONDITION

fﬂmag-function of the Appendix becomes, on using F as given by

equation (8),

L . X . . _

& =X,2; + w22, L - HE) - Agh - pER L ()

- hd - . + ° - - . - ° - . ’3 »
(2;-2:)024 (25 Zn+j)Hén+j(z) i et 2 n e
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where the complete set of arguments in H(z) is

(zl,...,z ’in+l""’in+m’ l"'"An’“i""’#ﬁf}i""’1’) and in H(Z),

n T
the same except that Zn+l""’Zn+m replace zn+l""’zn+m' Since
Zn+j = yj and 2 emth th, it follows from the multiplier rule that

along a minimizing arc H2 , and v%in+ are all zero.

. =)
g (2), %2 imn m+h
Hence, after simplification of ég, the Weierstrass condition is that for
1
a normal minimizing arc E  the inequality

ey s s
& =nu(2) - HZ) + 2D, 20

'
must hold at each element (t,z,i,ﬁ,;%v) of E for all admissible

hd . . S\ o : _
sets (t,zZ) satisfying Mg(t,gZ) = 0 and Zn+m+h - Nh(t,QZ) = 0. Let
. . “o
zZs be replaced by Xs5 Zn+j by yj, Zn+j by Yj’ and Zn+m+h by

Nh(t,x,Y). Then, on referring to the definition of H and-utilizing
the facts that along a minimizing arc Mg(t,x,y) = 0, VhNh(t,x,y) =0
(not summed) and that Mg(t,x,Y) is required to be zero in the Weiler-
strass condition, one can reduce the condition to the following form.

Weierstrass Condition. For a normal minimizing arc E the inequal-

ity

;\iLi(t,x,y) > A4L, (t,x,Y)

must hold at each element (t,x,y,Z,NBV) of E for all admissible sets

(t,x,Y) satisfying Mg(t,x,Y) =0 and Nh(t,x,Y) > 0.

CLEBSCH CONDITION

To apply the Clebsch condition of the Appendix to our transformed
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problem we need the second partial derivatives of F. From equation (8)
these are found to be

F. . =0, F. . = - H. . R Fé 5 = 0,
n+j n+m+h

2y if d = h,

F, =

Z 2
+
nimth ntd 0 if 4 # h.

On dropping the terms in the Clebsch inequality having zero coefficients,
re-numbering the subscfipts of the n's in the remaining terms and de-
noting the last r of them by 91, oy Gr’ we can state that for a nor-
mal minimizing arc the inequality

2

- >

H2 P T, ﬂe + 2% % 0
nt+j nte

must hold at each element of E' for all T .,ﬁm,el,...,er satisfy~
ing the equations Mgi .ﬂj = 0, Nhé .Hj - 22n+m+h9h =0 (h not
n+j n+J
summed).
By the multiplier rule, y% = 0 at an element where Nh > 0. At
an element where Nh = 0, and hence Z imth = 0, one may choose Qh £ 0
but T ey T and the remaining 6's all zero. The Clebsch condition

would then imply yh > 0. Thus, for a normal minimizing arc the multi-

liers 3 are all non-negative.
Po2CTS ¥y

Since Vh = 0 when Nh > 0, it follows that at elements of a mini-

mizing arc where Nh > 0 the term Eyhei of the Clebsch inequality

would drop out. When Nh = 0 the term can alsc be dropped, for,
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2 emth would then‘be zero, and the condition Nhin+jﬂj - 22n+m+h9h =0

(h not summed) would be satisfied for any Gh. In particular the Clebsch

condition would have to be satisfied with Qh = 0 provided Nhé nj= 0
n+)
and M 5 %. = 0. Thus the condition can finally be stated in the fol-
g n+j
lowing form.

Clebsch Condition. For a normal minimizing arc E the inequality

.t <O

must hold at each element (t,x,y,A,w,v) of E for all gets

T satisfying ng.(t,x,y)ﬂj =0 an@ Nhyj(t,x,y)ﬂj = 0,

J
where in the last equation h ranges only over the subset of

LR

l,...,vr for which Nh(t,x,y) = O.
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APPENDIX

This appendix gives the formulation of the Denbow problem as modi-
fied by Hunt together with the multiplier rule and the necessary condi-
tions analogous to those of Weierstrass and Clebsch. At the expense of
some repetition, we have made this appendix independent of the main part
of the paper.

Let t be the independent variable. For fixed p, define a set of

variables (to, tl, ey tp) to be a partition set if and only if

t <t, <...<t . Let I denote the interval t < t < t and I
o 1 P o - - P a

the subinterval ta—l <t< ta for a=1, ..., p -1 and

t, St t, for a=rp. Let z(t) denote the set of functions

(zl(t), el ZN(t)), where each Zd(t)’ o=1, ..., N, is continuous on
I except possibly at partition points tl’ .. tp-l' At these points

. . - + + .
right and left limits zdftl), za(tl), - Zm(tp-l) are assumed to exist

+
and we let 2 tb) = zdﬂtb), b=1, ..., p -1.

o«
The problem will be to find in a class of admissible arcs

z(t), (to,...,tp), togtgtp,
satisfying differential equations

a . .
(A-1) ¢ﬂ (tJZ)Z) = 0, t in Ia) ‘ﬂ =1,...,M <N,
and end and intermediate point conditions

(A-2) f),(to,...,tp,z(to),z(ti),z(ti),...,z(tp)) =0,

Y=1, ..., K< (W) (p+1),
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(A=3) %«ﬁt;) - %x(t;) -, =0

one that will minimize

f (to,...,tp, z(to), z(t

' D), 2(d), e 2(e),

1

1
Let Ra be an open connected set in the 2N+1 dimensional (t,z,i)

space whose projection on the t-axis contains Ia' The functions qg

]
are required to have continuous third partial derivatives in Ra and

t 1
each matrix " qszli is assumed of rank M in Ra' Let © denote an
o

open connected set in the 2Np+p+l dimensional space of points
.|_

(to,...,tp,z(to),z(ti),z(tl),...,z(tp)) in which the functions

?P’ p= 0,1, ..., K have continuous third partial derivatives and the
matrix
f

(a-k) \

T f T T - f + iy
Pty TPY, TPY, z (t)) Pz (t) P2y () ,oz“(tp) ”

is of rank K+1.

An admissible set is a set (t,z,2) in R, for some &=l,...,p.

An admissible subarc Ca is a set of functions z(t), t on Ia’ with

each (t,z,2) an admissible set and such that z(t) is continuous and

1

z(t) is plecewise continuous on Ia' An admissible arc E is a parti-

1

tion set (to,...,tp) together with a set of admissible subarcs Ca’
- +
a=1, ..., p, such that the set (to,...,tp,z(to),z(tl),z(tl),...,z(tp))

is in S .

Multiplier Rule. An admissible arc E’ that satisfies equations

(A-1), (A-2), (A-3) is said to satisfy the multiplier rule if there
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exist constants ep not all zero and a function

F(t,z,2,\) = /\pfés(t,z,é), t in I,

with multipliers )h(t) continuous except possibly at corners or dis-

continuities of E) where left and right limits exist, such that the fol-

lowing equations hold:

t
a .
(A-5) F, = f F, dt + c.r t in I,

o a
* ta-l
to
%t T [Zochoc] =0,
t+
. b
e + 1z F, ] = 0,

b
to
%Pz, (t) " [an] =0
o

e T -1 F. =
'o’ozoc(tp) [ ZocJtp

Every minimizing arc must satisfy the multiplier rule.

An extremal is defined to be an admissible arc and set of multipliers

z,(t), (to,...,tp), )\p(t), t, St <t

satisfying equations (A-1) and (A-5) and such that the functions
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Zd(t), )ﬁ(t) have continuous first derivatives except possibly at par-
tition points, where finite left and right limits exist. An extremal is

non-singular in case the determinant

F

I
}..J
=

tuiny Sy %M

[
'_l
=

P, © g3
ig different from zero along it. An admissible arc with a set of multi-
pliers satisfying the multiplier rule is called normal if e, = 1. With

this value of e, the set of multipliers is unique.

Weierstrass Condition. An admissible arc E' with a set of multi-

pliers ‘kﬁ(t) is said to satisfy the Weierstrass condition if

€ (t,z,2,2,2) = F(t,2,2,A) - F(t,z,2,2)

- (Z“ -2

m)Fé (t,z,2,A) >0

o

holds at every element (t,z,%,A) of E' for all admissible sets

(t,z,Z) satisfying the equations ¢2 = 0. Every normal minimizing arc

must satisfy the Weierstrass condition.

Clebsch Condition. An admissible arc E' with a set of multipliers

A (t) is said to satisfy the Clebsch condition if
[

F, . (t,z,2,)\) n T, 20

oM m

holds at every element (t,z,i,k) of E' for all sets (ﬂl,...,nN)

satisfying the equations

a .
¢ﬁi¢ (t,2,2) my = O.

Every normel minimizing arc must satisfy the Clebsch condition.

30




REFERENCES

1. C. H. Denbow, "A Generalized Form of the Problem of Bolza", Contri-

butions to the Calculus of Variations 1935-37, The University of

Chicago Press, Chicago, 1937, pp. L49-L8k.

2. R. W. Hunt, "A Generalized Bolza-Mayer Problem with Discontinuous
Solutions and Variable Intermediate Points', Given at Conference on
Guidance and Space Flight Theory, Marshall Space Flight Center,

Huntsville, Alabama, October 9-10, 1963.

>

3. G. A. Bliss, "Lectures on the Calculus of Variations", The Univer-

sity of Chicago Press, Chicago, 1946.

4. M. R. Hestenes, "A General Problem in the Calculus of Variations

with Applications to Paths of Least Time', The Rand Corporation Re-

search Memorandum RM-100, Santa Monica, California, March, 1950.

5. F. A. Valentine, "The Problem of Lagrange with Differential Inequali-

ties as Added Side Conditions", Contributions to the Calcylus of

Variations 193%3-37, The University of Chicago Press, Chicago, 1937,

pp. L4O3-4LT.

31



AUBURN UNIVERSITY

\62 55072

A MAXTMUM PRINCIPLE RE-ENTRY STUDY

By

Joe W. Reece
Grady R. Harmon

AUBURN, ATABAMA

33



A MAXIMM PRINCIPLE RE-ENTRY STUDY

By

Joe W. Reece
Grady R. Harmon

Auburn University
Auburn, Alabama

.

The Maximwn Principle of Pontryagin is used to find the point-to-
point re-entry trajectory of a space vehicle with an offset center of
gravity which will minimize the accumulated aerodynamic acceleration.
The mathematical model used incorporates the yaw angle and the true
angle of attack as cbntrol variables. The set of characteristic dif-
ferential equations is written with both algebraic and differential

constraints. A computation procedure is devised so that numerical

solutions can be obtained on a digital computer. /ééiﬂaiﬂ
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I. INTRODUCTION

In this paper an attempt is made to treat the optimum re-entry
problem in a simplified dynamical manner. The condition for optimality
is that the integral /YDRAG)2 dt be a minimum for fixed end points.

The first order differential equations of translational motion and the
algebraic equations defining the relative velocity vector are the
constraints. It is assumed that the attractive force of the earth and
the aerodynamic drag are the only forces influencing the vehicle's
motion. The vehicle has an offset center of gravity which aids maneu-
verability. The performance analysis is based on the Pontryagin fixed

end point problem with dual control variables.
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II. STATEMENT OF THE PROBLEM

The problem herein presented is that of determining from a given
class of allowable trajectories the best one yielding mission fulfillment.

A space vehicle is assumed to initiate a re-entry into the earth's
atmosphere from some initial point above the earth's surface. The
influencing forces are the gravitational force of the earth and the
aerodynamic force created by atmospheric drag. The prediction of the
vehicle's performance is based on the assumption that a control system
is desired which will satisfy the following criteria:

1. Minimization of the accumulated g~forces on the vehicle's

occupants.,

2. Capability of making a point landing.

In mathematical form the first of these becomes the minimization
of the integral of the square of the total aerodynamic acceleration.

The second can be accomplished by the proper choice of the initial
auxiliary variables.

The performance problem thus formulated becomes the Pontryagin
fixed end point problem, where the functional to be minimized has as
constraints the first order equations of motion and the finite relative
velocity equations. The boundary conditions are the initial and terminal
values of position and velocity. The yaw and true angles of attack are

taken as control variables.
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Additional assumptions made are as follows:

1. The earth is a rotating sphere and the inverse gravity law '
holds.

2. The mass of the vehicle is invariant with respect to time.

3, The vehicle has an offset center of gravity which is
invariant with respect to the vehicle.

li. The center of pressure is invariant with respect to the

center of gravity.
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ITI. COORDINATE SYSTEMS

Three fectangular cartesian coordinate systems will be used in
this paper. They are:

1. The plumbline space fixed coordinate system

2. The vehicle fixed missile system

3. The aerodynamic system.
A. PLUMBLINE SYSTEM

The plumbline system, Figure 1, has its origin at the earth's
center with the Y axis parallel to the gravity gradient at the launch
point. The X axis is parallel to the earth fixed launch azimuth and

the 7 axis is such as to form a right-handed system.
B. MISSILE SYSTEM

The missile system, Figure 1, is defined with its origin at the
center of gravity of the vehicle and its Yo axis parallel to the longi-
tudinal axis of the vehicle. The X and z axes are taken so as to form
a right-handed system which is parallel to the plumbline system at the
launch point.

As the vehicle moves along its trajectory, the missile system

undergoes a displacement with respect to the plumbline system. 1In
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flight the two coordinate systems are related through Eulerian angles
which are measured by a gimbal. The flight direction of the vehicle is
defined by first rotating about the Y axis by ¢r’ then about the new
intermediate x axis by ¢&, and finally about the z axis of the second
intermediate system by ¢p. A11 three rotations are considered positive
counterclockwise when vieﬁed from the positive end of the axis about
which the rotation is taken (see Figure 2).

Thus, a position vector in the missile system may be written in

terms of a position vector in the plumbline system as

%= 9.1 191 10,] %, ()
or
'xm" “cp sp ol[1 o olfce o -srl[x]
v, |=|-SP CP Offo cY sy|f 01 O Y (1a)
K o o 1||o -5¥ ct|{sR O CR||Z
m] gL JdU . i

where CP designates cosine ¢p, etc. Expanding the equation above gives

CPCR + SPSYSR  SPCY -CPSR + SPSYCR
Em = | -SPCR + CPSYSR CPCY SPSR + CPSYCR| X = [AD])'(' (1b)
L CYSR -SY CYCR

C. AFRODYNAMIC SYSTEM

The aerodynamic system is defined with its origin at the center of
pressure of the vehicle and its Yy axis coincident with the relative ve-

locity vector. The xa and za axes are chosen to form a right hand system.

h2
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Again, as the vehicle moves in flight, there will be a displacement
of the missile and aerodynamic coordinate systems relative to one
another, The direction of the relative velocity vector or the v, axis
may be defined by the following rotations:

1. Rotate the vehicle fixed reference frame about the Y axis
such that the X axis is brought to lie in the plane which
con-ains the ym,axis and the relative velocity vector. Denote
this angle as a_.

2. Rotate about the new z axis to bring the Yn axis coincident
with the relative velocity vector. Denote this angle as a.
This angle is the so-called true angle of attack.

A position vector may now be written in the aerodynamic system in

terms of the missile system as

i :_ca= -la] [ay] Em, (2)

or

— o — - - -
X, Ca -Sa O Cay 0 -Sa-W X
yo|=|8¢ Ca 0|0 1 O i (2a)
z 0 0 1 Sa 0 Ca Z
L2 L L7 v
—bm Ca | -3 | -Ca Sa 7]
¥ y
| l
E = I l - X = b
a = Cay Sa | Ca | Sa Say X [Aa] x . (2b)
Sa | 0 I Ca
Y I | _

Figure 3 illustrates this system.

1l




FIGURE 3. MISSILE AND AERODYNAMIC

COCRDINATE SYSTEMS
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IV. BASIC MECHANICS

Gravitational force. Since a spherical earth was assumed, Newton's

Law of Universal Gravitation which gives us an attractive force between

the earth and the vehicle is

s

MmX
(3)
HE

Aerodynamic force. The aerodynamic force, Figure L, is a force

due to atmospheric drag. It acts through the center of pressure and

the direction of the force is always parallel and opposite to the

relative velocity vector. Written in the aerodynamic system the force

takes the following form:

= [-F |. (L)

In the missile system

|

The expression

!
Lo |
=
——t
—3
o

(5)

— - —
F -F Sa Ca;

amx a
| Famy | = | Fa Co (5a)
_Famz_ L Fa Sa Say

for the magnitude of Fa is taken to be the following:




AERODYNAMIC FORCE SYSTEM

FIGURE L.
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Fa = Aqf(a, ay). A is the projected cross-section area of the vehicle,

q the dynamic pressure, and f(a, ay) a factor which is determined by

the vehicle's configuration.

Since the aerodynamic force is dependent upon the relative

velocity or the flow of air over the missile, it is appropriate at this

time to discuss this flow.
large moves with the earth.

movement with respect to the plumbline system of

where W is used to represent any abnormal air movement desired.

relative velocity vector in the plumbline system is then given by

or

48
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VRx

VRY

| vz,

In the missile

rm

X

=X + [X x
X X
|| +| ¥

X

E

® g - Wi,
©Ex

x| Oy
w

rmx

rmy

It is assumed that the atmosphere in the

This gives at all times an air mass

- W

=
B2

| Vrme

(6)

(6a)

(1)




or in terms of the aerodynamic system variables

ANEN TR A (8)
where
0
vI‘ = VI‘
0
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V. EQUATIONS OF MOTION

As previously stated, only gravitational and aerodynamic forces
are considered. Using Newton's Second Law, the translational motion of
the center of gravity with respect to the plumbline system is given by

the following set of second order differential equations.

T
V. = (4]
T = ax_ * F_, (9)
FERE
where
kf
T-Y
é.

By making the following change of variable, the second order equations

of translational motion may be reduced to first order.

u X

a=|vl=]Y[=X. (10)
w

The first order translational equations thus become

- [agt
GIVD(+AD1-?

b |R|3 m Cam. (11)
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Yor convenience, the following definitions are made:

= - , (12)
ERTE
(a1 rE
— F = ‘?ﬂ =F T, (13)
where
T Te=
- [AD] [Aa] F
F
a

or

- (CPCR + SPSYSR) Cala + (SPOR - CRSYSR) Ca + CYSRSaSa,

=
it

- SPCYCaySa - CPCYCa - SYSaSay (1k)

(CPSR - SPSYCR) CaySa - (SPSR + CPSYCR) Ca + CYCRSaSay

——d

Thus, the translational equations may be written as

N + g% (15)

u=F
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VI. FORMULATION OF THE VARTATTONAL PROBLEM

The formulation of the variational problem requires further
consideration of the constraint equations emanating from

T

v;m N [AD] vﬁ = [Aa] vr
or

_ a

V.= [¢p] [¢y] 2
where

a —

bl = 9] T

c

is the relative velocity vector referred to the intermediate system
located by [¢r]. The system of equations (17) is solved for ¢y and

¢p to yield (see Appendix)

VI'mX Vrm
SP = , CP = — J
72 ay?2 V2 4yl
rmx rmy rmx rmy
-t < <m
< ¢p_
o +c\/v 2 _y? v+ b v 2 _y?
SY rmz g rmz , CY - rm g rmz
v v
r r
- < <m
_qy_
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The roll angle, ¢;, is given by

(21)

- = Q(r <

and is obtained by limiting ny and ¢p to real values. (See Appendix.)

As expressed in the problem statement, it is desired to determine
from a given class of allowable trajectories the best one yielding
mission fulfillment. This is accomplished by finding among all sets of
admissible control a(t), ay(t) which transfer the vehicle from )TO to
)-('T one for which the functional:

t
T
D = /lo [DRAG]® dt (22)
takes on a minimum value. In this analysis the word drag will be used

synonymously with aerodynamic acceleration. Thus from Equation (15),

[DRAG]?

3 [~ |2"‘ N .- 12
FL N 5N - (FO°F - N = (Fa) s (23)

and

D= (F)2. (2h)

H= X, X+ 1 "ut A, D, (25)
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Wwhere

- i
Ap = hpland App = (g
3 6 |

The X.i(t), i=1...7, are the ‘auxiliary variables that are
incorporated in the same manner as the Lagrange multipliers in the
classical calculus of variations. Substituting into H from Equation (15)

results in the following:

- - - — - 2
= N . ! !
H=X; cu+Xqp [FaN+gX]T)»7(Fa) . (26)
The expressions for the auxiliary variables are obtained from the H

function and take the following form:

. a(x - N) dF!
_XI=_a_H=F' 11 +({II-N) a
2x @ 2% 3 ¥
(27)
)
d(F")
- - 7y OF a
X8 F (N c ) =+ =
II 11 % 175 %
. _ aln, M) _ _ dF!
—)‘II-E§=>‘I+F@L = * (N0 W) -
du du du
(28)
a(r")?
+ 2 a
7 o u
. dH
_)\'?z-ﬁ=o (29)
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It is implied from Equation (29) that )\7 = constant. The equations to

be solved for the control variables are given below.

= d3F!
oH 1 aN = a
R pox L2y (x W
aay a 1T aay 1I aay
(30)
a(F)?
+ A a = Q0
770 ay
X — aFI
oH _ = .o N = - a
T Fa (Mg 53 * (R M) =5
(31)
2
3(F")
+ )\ _..-—a—-=o

7T O «a

Equations (15) and (19) through (21) are the constraint and
definition equations which must be satisfied, and Equations (27) through
(31) are the characteristic equations. The' complete set of algebraic
and differential equations needed for the problem solution have thus
been found. The desired minimum drag re-entry path will thus be one
which satisfies all the aforementioned equations. A closed form solution
to this set of equations does not seem probable nor is the time spent in
searching for such a solution justifiable since numerical solutions via

digital computers can be achieved to almost any degree of accuracy.

55



VII. COMPUTATIONAL PROCEDURE

Functional Analysis:
When composing a computational procedure, it is sometimes found
convenient to write the equations in functional form. Listed below is

such a set.

9= 73
¢y=¢y (a: ay) qr: %)

¢p=¢p (a’ay>

uw=1u(x, u,?, a, ay)
H=H(x, u, § \, a,ay)
é\=§\(;s E’ 65 ;\:a: ay)
°H _ 3H - = 3, x _
%‘d‘m(xyu, ,x,a,ay)—o
oH

dH ,—- - -
= A =0
T‘y (x, u, a, s @y ay)

o

Starting Values:
m

@M
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0 cp
X" YO ? xcp = ycp » U TV
Z Y w
L9 | CP] |
~ —
210 Mo
‘0= |20l 2 X110 = | Moo
30 * 6o

Atmospheric tables for p as a function of altitude.

Atmospheric tables for W as a function of position.

Aerodynamic tables for f(a, ay) as a function of (a, ay).

"N" Line Computation: '

(1) Using starting values, iterate Equations (30) and (31)
simultaneously for a and ay.

(2) Use (a, ay) from Step (1) along with starting values to
compute the following in order.

¢r from Equation (21)
¢y from Equation (20)

¢p from Equation (19)

u from Equation (15)

H from Equation (26)

* 1y I from Equation (27)

XII from Equation (28)
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(3) 1Integrate to obtain the following:
u for u for X

XI for XI

)‘II for M 1T

(4) Use integrated values from Step (3) as starting values for

the n + 1 line.
Cut-off Criteria:

v <
‘VRl < Mach 2
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VITII. CONCLUSION

The Maximum Principle has been employed to study the problem of
minimizing the integral of drag squared.

The cut-off criterion on the trajectory was \WR‘S Mach 2. This
is a reasonable criterion since the expression used for the aerodynamic
force is valid only for velocity > Mach 2. If the desired terminal
position is not attained simultaneously with the cut-off criterion, then
a different set of initial auxiliary variables must be chosen. This
procedure must continue until all of the terminal conditions are simul-
taneously satisfied.

No procedure has been developed in this paper for determining the
initial auxiliary variables. An attempt is being made to formulate the
transversality conditions for the problem and to apply the gradient
method as an aid to numerical solution.

The problem, as formulated, is assured of a necessary but not

sufficient condition for the existence of an optimum.
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APPEND IX

SOLUTION FOR dr, ny, AND Q!p

A first algebraic solution of the set of Equations (17) for ¢p

and ¢y yields

AV +7 '\/vz +72 L g°
Sp = rmy - rmx rmx rmy
72 2 v?
X rmy
av _\/ 2 4yl _ gt
CP= mx - rmy rmx rmy
I
rmx rmy
-b Vrmz + c._V[b2 + 02 - ;;z
SY = -
7,2
cV__ b\/b2 + o2 Vr21nz
Y = -
| T, .2

First, ¢p and ¢y are limited to real values by setting a = O.

It is easily shown that

‘

V2 +v° _a%2.p24c2_ vy .
rmx my rmz

The choice a = 0 is allowable because of the dependency of the set of

(A1)

(A2)

(A3)

(aL)
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Equations (17). As only two of the angles are required to ldcate a

vector in three-space, no unique solution exists for ¢r’ Qp, and ¢y.

However, a = 0 provides that

> (45)

/

Now, the corresponding values of ¢p and dy must be unique. To settle

the choice of sign in Equations (Al) through (AL), it is recalled that

the determinants of the right-handed rotation matrices [¢&] and [¢p]

must be equal to unity. This eliminates two of the four possible sign

combinations in Equations (Al) and (A2).' The choice between the two

remaining possibilities is made according to the relation between the

i aerodynamic coordinate system and the relative velocity vector

forth in Section IV. The resulting equations are

Vo v
SP = , CP = eV
N v2 sy
rmx rmy rmx rmy
- < <
< ¢p_
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and

An additional

rI.‘hus, b2 +c

-b Vema va2 +o? - Vz'2mz
5Y =
b2 + 02
> (A7)
cV_ b\/ CE I A
CY = -
b2 + 02
- < <Tf
=9, < )
result of setting a = O can be seen from Equation (18) as
b = VRY
(A8)
2 2
c VRX + VRz
2 2
= VR = Vr and (A7) becomes
\
-b Vv +c v 2 -V2
SY = rmz r mz
v 2
r
> . > (89)
cV +b v -7
oY - rmz r Mz
v 2
r
<9, s )

The limits on ¢r’ ¢p’ and ¢y are chosen to provide a full

revolution of freedom and eliminate any excess motion.
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averaged second order approximation to the performance function is minimized

subject to constraints on the means and variances of other functions. The minimi-
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Introduction

The earliest theoretical approaches to optimal guidance (Refs. 1 and 2)
lead to computational methods for synthesizing linear feedback systems fur-
nishing an approximation optimal to second order in an expansion about a
given optimal reference trajectory. While the resulting systems fulfill their
theoretical promise in providing high performance, terminal accuracy is
found to be wanting, and the practical mechanization of the feedback law is
encumbered by the need for storing time-varying '"gains'. Recent studies of
the terminal accuracy problem (Refs. 3 and 4) indicate that a large improve-
ment may be realized by transverse state comparison with the reference tra-
jectory and suggest that this relatively simple procedure may be more effective

than the addition of quadratic terms in the feedback approximation.

The present paper reports an idea for a synthesis scheme in which an
ensemble-averaged second order approximation to the performance index is
minimized with respect to certain parameters. These parameters include the
coefficients in three polynomials in time which are used in place of general
time-varying functions. Polynomial approximations are used for (1) the con-
trol programs of the optimal reference trajectory; (2) the state variable his-
tories of the optimal reference trajectory; (3) the feedback gains for the
assumed linear feedback control system. Additional parameters to be opti-
mized are the coefficients in an assumed linear rule for termination of per-
turbed trajectories: The treatment is based upon the statistical methods
pioneered in Refs. 5 and 6 in connection with synthesis of optimal midcourse

guidance approximations.
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Formulation of the Problem

The dynamical system under consideration satisfies
x = f(x,u,t) (1)

where

x(t) is an n-vector of state variables

u(t) is an m-vector of control variables

t is the independent variable (hereafter called time)
f is an n-vector of known functions of x, u, t

. d
() 18 3O

The system operates over a finite time interval. The initial time t0 is assumed
fixed, but the initial state is a vector of random variables with specified cn-
semble average properties. The problem is to minimize the ensemble average

of a given function of the terminal conditions*
I = el t]] (2)
subject to the constraints
e{w[x(tf),tf]} =0 | (3)
E‘,[(lbj[x(tf), tf])z} = (4)

where g" is the jth component of any vector g. J is to be minimized while

specifying the means and variances of the functions wj.

* t_ is the terminal time
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It is assumed that nominal® control programs E(t) have been determined

which minimize <p[5<-( t-f), Ef] while meeting constraints Y [;( ff), ff] = 0. Thus,

x = f(X, U t)
T
of
Ao=o- (Bx) A
7 a1 221
X == = 0 (== #0 is assumed)
du auz

with boundary conditions

to’ x( to ) specified

h -
where ( )T is the transpose of (), the ijt element of a matrix S-% .
i
g and y both vectors, is -a% . With u(t) and X(t) specified, the
. oy
analysis will be carried out in-terms of the perturbation quantities Su(t)

and 6x(t), where, by definition

u(t)

u(t) + Bu(t)

x(t) = X(t) + 8x(t)

1t

* (7)) is () evaluated on the nominal path.
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(6)

(7)

(8)

)

(10)

(11)

(12)

(13)



The minimization of J is to be carried out with respect to a number of
parameters of the problem. One set of these parameters appears in the rule
for terminating trajectories which must be imposed because there is no auto-

matic way to determine tf on each member of the ensemble. Suppose that the

termination rule is described by

Q[x(t),t]t=tf =0

where £ may be any once differentiable function of x and t. Consistent with
the second order approximation theory to be employed, the optimality of the
reference trajectory leads to the result that the most gencral relevant in

the analysis is a linear function of x and t. To first order, then, (14) may

be written as

. =T\ T 19} ¢
0 = Q[x(tf),tf] + [ax 6x]t:tf rQdt

where, by definition,

s (28, L 28
Q_‘(axx*- ot t -1
o f

Since l;f = tf + dtf,

(? # 0. This is simply the statement that { must not be a constant of the

motion if (15) is to give a solution for tf.

Solving (15) for dt, gives

f

dtf = + Qx 6x(tf)

where, by definition, o (—a—g
_ n[i(tf),tf]
g - ——— X

(- Q) (- Q)
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the terminal time may be determined from (15) provided

3x /¢ -t

(14)

(15)

(186)



2 and Qx are the parameters to be optimized: it is evident there is no loss

of generality in assuming - - 1.

The system controls for cach member of the ensemble are assumed to

satisfy
J
?Iu i NQ . r\( K
u(t) - Z' a, t o+ 2. bj t‘]l.x(t') - >J 8 t ] (17)
i=0 j=0 k-0

where Nu’ Ng and Nx are specified, ai, bj’ ¢, are unspecified. The first

k
term in (17) is the polynomial approximation to u(t). The scecond term is the

result of an assumption that the feedback control is linear in x(t). The ch tk

is the polynomial approximation to X (t). ij t‘ is the assumed form of the
feedback gain. The most general linear feedback would use an mxn matrix,
say A(t), of unspecified functions of time. Thus, the formulation used here
replaces the most general linear .feedback control system, which would require
storage of u(t), X(t) and A(t), by a linear feedback control utilizing poly-
nomial approximations. It may be verified by inspection that A bj’ ¢ are

mx1, mxn, nx1 matrices for each i, j, k respectively.

The problem, then, is to simultancously choose all parameters (—1, Qx’

a, b, ¢ to minimize J while satisfying the :bJ mean and variance constraints.
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Derivation of Necessary Conditions for the Optimal Parameters

The approach used here will be to adjoin all relevant constraints to the

performance index by means of Lagrange mulfipliers. Hence,

3 = elolx(t), 1) + uTew[x(tif), £} + %ijj[e{(tajl'x(tf); tf])z} - Nj]

g
" e{ OF + 83Ty f - %) at (18)

]

-

The essential approximation of the analysis is the assumption of "'small" per-
turbations. The ensemble of system trajectories is treated by expanding about
the nominal path and keeping terms through quadratic in 8x and 8u, but
dropping higher order terms. As an example:*

elplx(t), t)) = olx(E) 5] + (e + %‘fe(dt)lt:;f

9x ot 3t 3x

2 2 2 2
+le[dede+de-a—"a'dt+dthx+dta—?dt:\ (19)
2 ax2 atz t=t

f

Evaluation of (19) requires evaluation of

d[x(tf)] = x(t;) - i(if)
- tf .
ox(E) + f_ x(1)dT (20)

t

[\

But

* The ijt'h element of azh/ay 3z, where h is scalar and y and z are
| 2%h
vectors, is defined to be —'l'—— .
Ay az]
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W

X(T) = X(1) + 6x(T)

= i(Ef) + %(Ef)(r—if) + -

+[—2§6x +%§6u]tzf+ ---

f

Substituting (21) into (20) and dropping terms above second order gives

. e s 1= 2
d[x(tf)] = 8x(t) + X(t;)dt, + X(t;) dt,
of of
* [Bx 0x + 3u 6“] _ dtg
t=t;

Everywhere in (19) that dt, appears it is replaced by  + Q bx(t—f).* This

f —

makes all terminal functions depend only on quantities evaluated at t = tf .

The x terms in (18) are integrated by parts. The Lagrange multipliers

V are written
v = UV + dv

‘where dv is assumed to be of order 6X(Ef). It is further assumed that the
Lagrange multiplier functions §)X(t) are of order 6x(t).** The Lagrange
multipliers kj are assumed to be order one. These assumptions all rely on
the basic assumption that the entire ensemble of trajectories lies within an

adequately small neighborhood of the reference path.

Expansion of (18) through second order and grouping similar terms gives

* Q) is assumed to be the order of €[ 6x(ff)].

** Note that 86X (t) is different on each member of the ensemble, just as
6x(t) is. A(t) is the same for each member, given by (6) and (10).

(21)

(22)

(23)



J=5+[-§§(1+>}Qx)+ Q] b[éx(t)J+[—:}+%ﬂ Q
t=t

+ a[gf oL 4y (Q+Q bx):l + 6’{6 T[_? r2q _aixb%_i_
f

- (390 aT(2%)+ aTha ) k2 Pay Y ia)]

i=1

S(hg . 2020 , (29 i AU P
6x} —+Q<I’Qx+ xax+<ax>+ kjw(8x+wnx)}
t=t j=1 t=tf

P P s 4 .
- —Q .
elox(t)] - Z K, N+ -;-n [q>+ Z‘kj(zb]) J 4 auTL(%f F Q)
j=1 j=1 f

e(b6x) + J)ﬁ] - [xTau',x)]t_E + [xTa(ax)]tAt - e[“Tb"]t—E
t:tf f '”o ‘—f

Ef
+ 6[6>\T6x]t:t + 6_[ {(xT+ 6)\T)(§+ 6x) + (>\T+ 5)\T)f + AT(Z—t 6x
t

(o]
(o]

2 2 2
af 1., T3H T 31 T 3 H
* bu)+2[6x — 6x + 6x axaubu+6u S OF
3x
T 6211 T Bf Bf
+ 6u —- bul +OX (=T = 6u)}dt (24)
au2 -3¢ Bu

where extensive use has been made of the following notational substitutions:

o + VY

H = ka

o




1 is the identity matrix

oo 80
0 axx+ ot
2 2 2 2
) S 720, 20 80y, 00 . 20
2 dx at ax 3t 9x at2

ox

and all derivatives are evaluated on the reference path.

Using (12), (13), (17), Su(t) may be written as

6u(t)

u(t) - u(t)
N

i=0 j=0

N

Ny ; g . _ x K
Zait - U(t) + ij t’[bx(t)»fx(t)-i o, t ]

k=0

The following purely symbolic notations are introduced for convenience:

No
a, t1 = at
i
i=0
N
i
b, tt = bt
f i
j=0
Nx .
z ckt = ¢t
k=0

With these suhstitutions Su(t) may be written as

Bu(t) = at - u(t) + bt[8x(t) + X(t) - ctl

Su(t) from (26) may be substituted into (24), giving J as a function of {, Qx,
a, b, ¢ and other quantities. A necessary condition for optimal choice of the

unspecified parameters is that dJ be zero for arbitrary first order changes in

the parameters.

(25)

(26)
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By virtue of the optimality of the reference trajectory, all first order
terms in dJ, and the B8u( Ef) term also, drop out. Thus, dJ is composed
entirely of second order terms and, by a straightforward development, may be

written as

SN G B 4 S LR GRS

P j T s . e y
k(3 v ¥a)(3 +¥la ] -alén « 2220 ()

+ i k, wl(ﬂ +i'a)] +’d3[—2—;"3 +9a |- ox'} 6(6x):l

j=1 t=1:f

+{[3Qx+g—:%£+<-g;3) Zk']’l< +¢pJ )]6(6x)+0[¢
j=1

p : . — g v
) k (J;J)Z] " dUTab}t_EdQ . tr{x[(-g—f)T+ (g—f()T(gf . Qe

j=1 '

PLR(RE - Pa) Pvecoe [ a) k@ 0T} an
= j—l f

2 2 2

+6J o™ (3 e Eo) o o2 Bl 2

Ox

2 2
+ oty 8 bt>+[at—°6+bt(3('—ct)]T(a—H . il )]é(bx)

3u dudx 3u

2 2
[GxT o H_, [at—ﬁ+bt(§-ct)]Ta H +(6x L+LT)af]t da
xou Buz
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2
" +[at -° +bt(6x +§—ct)]T o

N
+ i tr[(&x +% - ct)(GxT
§=0

Buz
N 2
T 3f\1,j _ T b H T o H
(6x L+1) )]t db 2[6 < 3u +[at -T +bt(5x +Xx -ct)] Y
k=0 ou

T, T 31k
+ (bx L+L)au]t dck}dt

(27)
where, by definition, tr stands for trace and
T
X(t) = €l6x(t) 6x (t)]
Setting dJ = 0 provides necessary conditions for extremizing choices
of the control parameters. The Lagrange multipliers 6\ satisfy
©/af 3 LV °H T 3°H . 3°H T °H
6’”(5’?{*5“)6"*( 2 Tt ekt 3xou Pt (PY) bt)“
9X Bu
2 2
9 H T 3 H - - _
(Bxau + (bt) —-—2>[at U+bt(X-ct)] = 0 (28)
du
L2 50\ T/ % T
\ .
QYOO { o5 () (G acr o () - o d e,
p T j
. a;p] ] P! SR —r T
* k( b a )(ax +¢Qx/:]6x+n[¢nx *
=1
T T p T
of V(2 . " 7, (2
(@] (@] ) (i) V) (R ba) e
j=1 f
(29)
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Because 8x(t) is a vector of random variables, 6X(t) is also. Neither can

be used computationally. However, it may be verified by direct substitution that
SX(t) = L(t)ox(t) + 4(t) (30)

where L(t) and £(t) are the same for every member of the ensemble.

T 2 2
: of  of of  of o H T3 H
L+ (ax+ aubt) Lo+ L(ax+ ou bt) * axz F(bt) duadx
2 2
o H T H
+ 3x3u bt + (bt) auz bt = 0 (31)
T 2 2
- af . af °H T H\( ., ~ . = B
Lo+ (ax+ aubt> L+ (axau + (bt) auZ)(at T+ bt(X ct)> -0 (32)

The boundary conditions for L and 4 are evident by inspection of (29).

To obtain the remainder of the necessary conditions resulting from dJ =0,
it is necessary to develop the differential equations for €(8x) and for X.
First, it may be noted that €(6x) appears only in terms that are second order,
hence it need be calculated only to first order. The linearized perturbations of

(1) with Su(t) from (26) immediately give

4 _ (3L, at at o~
S esx) = (ax+ aubt)e(ax) v 2= lat - T+ bY(X - ct)] (33)

It is convenient to define

6x = £(8x) + 8x (34)
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so that

e(6x) e(bx) + X

»
i

e (6% 6%

"
il

Then, by direct substitution

% - (B )% L F(RLL Uy

The boundary conditions for £(8x) and X are given by
6[6x(t0)] , specified
elox(t) 6xT(t )] = X(t ), specified
0 o o”

There are thus 2(n2 +n) differential equations for €(6x), X, 4, L and
corresponding boundary conditions, half at tor and half at Ef. The conditions

at Ef involve the Lagrange multipliers dv and kj; constraint equations

(3) and (4) furnish the additional required 2p relations.

From (16) it is clear that EZ is a bias in the choice of dtf. Such a bias
gives added flexibility because the differences of at and ct from u and X
respectively cause €[6x(t)] to be non-zero. Applying dJ =0, Q may be

explicitly solved for in terms of other parameters of the problem:

( M
o+ 3220, (38).) W03+ Ha)Jeconr "y
Q= - =
. 2 2
S +Z kj(wj)
1= Jt=t;

(35)

(36)

(37)

(38)

(39)

(40)
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Thus, (_l need not appear as an unknown in any numerical optimization pro-

cedure.

The parameters Qx may also be solved for, from dJ =0, interms of

quantities evaluated at t = ff:

’

ox 9x ox
Q = - ¢ (41)
. P 5.2
&+ ) k()
L ji=1 -

After utilizing (40) and (41), the unspecified parameters are a, b, c. These

80

must satisfy integral relations which result from dJ =0, for arbitrary small

changes da, db, dc.

t 2 2

9x du *

f
T H — _ £ i
0 = J; {6(6x ) 2 at - u + b(X - ct)]T é__le + [8(6xT)L + LT]g—u}tldt (42)

du

o .
i=0,1,2,--N
u

t

f 2 2
_ T — - T3 H
0 =,J‘t {[x (X - ct) £(8x0)] aax;{u + {(X(bt) +€(6x)lat - u + bt(X - ct)] ;13
o
T, .T T.3°H
+ (X - ct)e(8x )bt) + (X - ct)lat - U + bt(X - ct)] }—2
du
+ ([x + (i-ct)e(be)]L + [e(6x) + (i-ct)]LT>%;f} ¢ at (43)

j=0,1,2,-——,Ng




t
f 2 2
T & H — — T3 H T T.3f1 .k
0 = J; {E(Ox )axau +[at—u+bt(6(6x)+x—ct)] ———2 +[6(6x )L+L]au}t dt

b du (44)

k=0,12,--N
X

The parameters a, b, ¢ mavy not be eliminated algebraically because other
quantities depend on them. The necessary conditions involving €( 6x), ;(, 4,
L, a, b, ¢ arc all interlocked. This is characteristic of dynamic system
optimization problems with control parameters. Although such problems are

seldom easy, the one considered here prescnts no new conceptual difficulties.
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An Alternative Approach to the Necessary Conditions Derivation

Thfs analysis is based on second order expansions and is closely related
to the second variation guidance schemes of Refs. 1 and 2. There, for a single
perturbed trajectory, the second variation of the performance index is minimized
subject to satisfaction of the x=f and § =0 constraints. One proceeds by
 making stationary the function @ =¢ + T/’Tw, where properly chosen V will
lead to satisfaction of the terminal constraints. The second variation of &,

from Refs. 1 and 2, ‘is

2 2

[de——idx+de—a-—q—dt vat 22 dx+dt—-—9-dt]
3x ot at 9x
dt
f
Ef 2 2 2 2
T3 H T 3 H T 3 H T3 H
+ I [bx 9 0x + 8x T 8u + 8u 303% 0x + 8u — bu]dt (45)
to ¥x du

Since the reference path satisfies all the constraints, it is sufficient to adjoin

. the linearized perturbation constraints

- af af
8x = 5% 6x + 3u Su (46)
d¢=[de+§£ -0 (47)
X ot t—E
I §

Then, given 6x(to), bdu(t) is chosen to minimize %Jz while satisfying

constraints (46) and (47). This leads to a linear feedback relation
bu(t) = - A(t) 6x(t) (48)

It is tacitly assumed that x(t) and u(t) as well as A(t) are "stored"

(available to the guidance system).
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The significant operational simplification of neighboring extremal guidance
introduced in this paper is the substitution of a relatively small number of poly-
nomial coefficients for the functions u(t), x(t), A(t). The general functions of
time would require tables of values vs. time in operation with a digital computer.
Use of polynomial coefficients instead may be expected to greatly reduce the

storage requirements.

An additional advartage of the polynomial approxirpationé is that the difficulty
AMt)y- > as t~ Ef disappears. The polynomial }Zbj tj will certainly be well
behaved in the neighborhood of t = tf. Thus, the need for a transverse state com- .
parison, so important for neighboring extremal control, may become less sig-

nificant in analyses conducted along the present lihes.

It is, of course, necessary to satisfy the constraint (46) in any (small per-
turbation) analysis. It is not possible, however, to satisfy (47) for arbitrary
6x( to) with the polynomial approximations. Hence, the use of a statistical per-
formance index is not only appropriate, but even unavoidable. The alternative
approach to the derivation of the previous section is to consider minimizing the
ensemble average of -;- Jz. Constraints on the mean and variance of the abj's,
[equations (3) and (4)] are imposed. Because these ensemble averages involve
only the mean and covariance of 8x(t), it is sufficient to use the differential

equations for €(6x) and X in place of (46). Thus, (24) is fully equivalent to

t
J = 6[ ]+du e {dylx(t ),t]]+22 k. E{dabj[x(tf),t]} +J{LT[(af bt)6(6 )
j=1 0
+lat -1 + bt(X - ct)] - < 6(6x)]+trL[( bt);( +§(gf flbt)T—SE]}dt

(49)
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*

Here 4(t) and L(t) appear as a vector and matrix respectively of Lagrange
multiplier functions.* 4(t) is the vector adjoint to el 6x(t)], L(t) is the
matrix adjoint to §X(t). All the necessary conditions of the previous section

may be obtained by requiring J of (49) to be stationary with respect to arbitrary

small changes in the unspecified parameters.

Since L multiplies symmetric matrices in (49), it may be assumed symmetric

with no loss of generality.
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Possible Additional Complexities

The analysis as presented allows disturbances only in the form of pertur-
bations in the initial state variables. It also assumes that the state is known
perfectly at all times. Both restrictions may be relaxed while still retaining

the polynomial approximation approach.

Disturbing influences may arise from perturbations of system parameters
from their reference values. For example, the thrust and/or fuel consumption
rate of a rocket vehicle may deviate from its pre-planned value. To allow for
this in the analysis presented here, such system parameters may be regarded
as state variables with zero time derivatives. Thus, a parameter deviation

becomes an initial state variable perturbation.

Time-dependent random forcing functions may he added to the analysis if
their means and covariances are known, although serious complications may
arise if the noise is appreciably correlated in time. The main effect with zero-
mean white noise would be to add a term to X . The other equations would be

unaltered, but any numerical solution might be substantially different.

If state estimation errors were not considered negligible, it would be pos-
sible to include them by considering the estimator characteristics. A linear
perturbation estimator would be consistent with the degree of approximation
'used here. The estimator gain matrix would play a role analogous to the feed-
back gain matrix. It would be approximated by a polynomial analogous to ij tj.
The polynomial coefficients would be added to the others, all to be chosen

simultaneously to optimize the system ensemble average performance.
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Computational Considerations

The preceding analysis has been devoted to problem for mulation and
development of first order necessary conditions for a minimum. Computa-
tional determination of the control parameters which actually furnish a mini-
mum represents a second phase of study. It is clear, however, that any of the
methods applicable to the solution of Mayer/Bolza variational problems appear
likely to be equally suitable to parameter optimization problems of the present
type. On the basis of experience, the writers are favorably inclined toward
the use of gradient methods (Refs. 7 and 8) and methods of the second variation
type (Ref. 9), and in this connection it should be noted that the usual require-
ment for rapid access storage of control variables versus time is eased in favor
of a somewhat less severe requirement for storage of parameter values. With
the second order method of Ref. 9, it appears that parameter optimization will
entail the solution of fairly large linear algebraic systems, and hence that

greater attention than usual must be given to error propagation problems.

Concluding Remarks

The present paper has sketched in some detail an ensemble averaging
approach to optimal guidance pol&nomial approximations. Conclusions on the
merits of this approach must be deferred until numerical examples of syn-
thesis procedure have been worked and system simulations performed. In
connection with the problem of guidance system mechanization, it will be of
interest to investigate the use of transverse state comparison or some similar

mode of comparison employing polynomial representation.
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ABSTRACT

A method for the precise numerical determination of optimum two-impulse orbital
transfers between inclined elliptical orbits is described. A numerical optimization
technique termed "adaptive steepest descent" 1s shown to overcome convergence
difficulties encountered with other less powerful methods. A double-precision IBM
7094 program incorporating this technique was used to make detailed studies of
complicated impulse function spaces associated with various orbit pairs which had
been previously investigated by function contouring. Several interesting results,
including the existence of at least three locally minimum two-impulse transfers
between "almost tangent" coplanar elliptical orbits, were revealed by these numerical
studies. Other numerical data indicates that minimum impulse transfer circumstances
for coplanar orbits may be extended to strongly inclined orbits; that is, one and
two-impulse maneuvers which are optimal exist for classes of inclined orbits. Results
of a study of orbits which osculate to a Lawden Spiral are also presented. It was
found that two-impulse transfers between these orbits always required less veélocity
change than a transfer between the points of osculation, along a Lawden Spiral.
Extensive numerical comparison revealed that the difference in velocity change for
the two maneuvers increases approximately as the L.7 power of a parameter denoting

distance between the points of osculation on the Lawden Spiral. AA} W
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NOMENCLATURE

Scalars

a Semimajor axis

a Magnitude of step size

e Eccentricity (magnitude of g)

i Inclination

p Semilatus rectum

r Radius to satellite

81, 8y, 83 Scaling parameters

A8 Transfer angle (true anomaly difference in transfer orbit
plane)

n Gravitation constant (95634.50100 mi3/sec?)

¢l Angle from reference axis to departure position in initial
orbit

¢2 Angle from reference axis to arrival position in terminal
orbit

w Argument of perigee, angle from reference axis to perigee
point

Vectors

e Orbit shape and orientation vector

£ Unit vector in gradient direction

I Impulse vector

N Unit vector denoting reference direction (line of intersection
of initial and final orbit planes)

r Geocentric satellite position vector

Yy Unit vector directed toward point of departure from initial

orbit
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Vectors
U. Unit vector directed toward point of arrival in final orbit
v Velocity vector
W Unit vector directed along orbit's angular momentum vector

Subscripts

1 Initial orbit

2 Final orbit

t Transfer orbit

tl transfer orbit departure point
t2 transfer orbit arrival point
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I. INTRODUCTION

1,2, 3) the authors discussed the properties

In previous papers,
of function spaces associated with optimum two-impulse transfer between in-
clined elliptical orbits. An impulse function contouring technique which
presented the nature and structure of the entire function space was utilized
to identify all possible regions of a given function which would yield
optimum transfer orbits.

Contouring proves adequate for locating minima, and for providing
insight, but it generally does not provide required numerical accuracy. This
is true for many of the most interesting orbit pairs wherein the difficult
phase of numerical optimization occurs during the final convergence, These
particular functions are comprised of long, narrow '"valleys" containing ore
or more minima, It is therefore necessary to employ an alternate technique
to compute precise optimum orbital transfer circumstances for use in engineer-
ing design studies.

Fxperience with ordinary steepest descent processes (4) led to
numerous frustrations and amplified the need for the more powerful adaptive
steepest descent technique presented here. This rapid numerical method has
been applied successfully tc the minimization of numerous different orbital
transfer function spaces. The method also has obvious application to a large

class of problems which require numerical determination of the extrema of

a function of 3 or more variables.
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II. TWO-IMPULSE.ORBITAL TRANSFER FORMULATION
Adopting the notation of Ref. 1, consider a two-impulse transfer
procéss between an initial orbit with elements p,, e;, w,, i and a final

w The formulation assumes Keplerian orbits and

orbit defined by Pos e2, o°
results from choosing the final orbit as the reference plane; i is the rela-
tive inclination of the two orbit planes (cos i = W, + W, where W, and W,

are unit vectors directed along the angular momentum vectors of the initial

and final orbits). For coplanar orbits, the reference direction (N) is arbi
trary, but for inclined orbits N is defined as the line of intersection of
the two orbit planes (N= Wy, x W, / |ﬂ2 x Wl ).

For the general case, there is a three-parameter family of trans-
fer orbits joining any two specific orbits., The angles from the reference
line to departure point (ff7) and to arrival point (ff;) are a natural choice
for two of the three independent variables, since they, along with the given
crbital elements, specify position and velocity in the known orbits (Fig. 1).
The semilatus rectum (py) of the transfer orbit was the third parameter used
for this study. It was chosen since it simplified the structure of the im-

rulse function, I (¢1, ¢2, pt). (5)

TRANSFER GEOMETRY
Unit vectors (gl and gz) and radius vectors (r; and r,) toward
the departure and arrival points may be computed from ¢1, ¢2 and the elements

of the initial and final orbits:i#

_[ll = [COS ¢l, sin ¢1 cos i, sin ¢l sin i] (1)

*The subscripts 1, 2, and t denote initial, final and transfer orbits.
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g.z = [cos ¢2’ sin ¢2, 0] (2)
P
= . U = 1,2 (3)
L3 [1+ej cos (85 - wj)] J ) ’
Unit vectors normal to the three orbit planes are defined as follows:
W = [O, - s8in i, cos i] (4)
W, = [o, 0, 1] (5)
= 6

Two vectors that define the shape and orientation of the initial

and final orbits complete the transfer geometry:(é)

e.j = ej [ cos wj, sin u)j cos ij’ sin u)j sin ij] J =1,2 (7)

Th2 true anomaly interval traversed in the transfer orbit ( A ©) may be

determined directly:
o

- . ' o
= (_111 1_12) 0 < A6 < 180 (8)

o8 A®
No generality is lost if the true anomaly interval is limited
to the first two quadrants., Although this does restrict the problem to
"short transfers", if the signs of the velocity vectors in the transfer
orbit are changed, the "long transfers" may be computed. Thus, in order to
determine the absolute minimum impulse transfer between two elliptical orbits,

it is necessary to compare the minima found from all the short transfers and

all the long transfers.
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IMPULSE COMPUTATION

The function to be minimized is the total impulse for the two-

impulse maneuver:

I = |l o+ 15l 9)
where

= = %, - 5 (10)

L =L T L, (1)

(When a double sign is used, the upper sign refers to a "short transfer").
Velocity vectors in the initial and final orbits at the departure
and arrival points (_V_'l and y_z) and the corresponding velocity vectors in the

trarsfer orbit (-Ytl and x_/tz) are computed as follows:

v, o= ‘/piTﬂl x (g + Up) (12)
v, = \/pI?Hz x (2, + L) (13)
V.. - é“'t_ (v + zﬂl) (14)
Yo = ;1 (v - 2U) (15)
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where,
¥ = [VER, ( - ,21)] /olx x5 (16)
z = Jp tam (AOG/2) (17)
Py

Fgs. 12 - 17 may be derived from Eq. 3.26 of Herget.(é) The final impulse
equations are obtained from Eqs, 10 - 17 by substituting Eq. 6 and perform-

ing several algebraic manipulations:

ll = + [! + zgl] - ¥ (18)

Flr -

N @9

22
Impulses corresponding to long and short transfers are compared,
and the combination producing the lesser impulse is used for the remaining
cbmputations. Because of the nature of the particular functions being ana-
lyzed, regions neighboring each local minimum are usually comprised entirely

of either long or short transfers.

IMPULSE MINIMIZATION
Minimization of Eq. 9 by a steepest descent technique requires
computation of the gradient. Upon differentiation, Eq. 9 provides the

follovdhg expressicns:

(z, - dl,) (I, - 4d1.)
4T = —% L, 2= (20)
| I | | L |

99



NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

or,

oI

0Pt

oI

6¢2

The above expressions may be expanded as follows:

oL
0Py

0_1..2
9 by

100

| 4|

+ 0Vt oYy

d Py 2 Py

- 9% LA
P, 0Py

+ 0% ol
0¢1 9 ¢l

_+ 0% a
FY 2 Y2

z %2 o Vs
7,

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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oly _ - 0Ny | 01y (29)
38, 3%, 39,

Noting that  9¥,/ op, and !2/ gp, are each zero, a simplified

expression for 91 / 9 p, may be obtained through several algebraic

ma.nipuiations:
_L_I=iL[.%'(1‘291_)-12'(!*292’] (30)
o Py 2py | L | | L2

Additional expressions are obtained from eqs. 26 - 29 by direct differentiation
of the vector equations.

/B {t Up | _decsc A _ cscAo 971
p a¢1 0¢l

t ™

+<1-P_t) [y_l dcsc A @ +csec A © dgl:l

T2 a9 : 08
- U, _dcot AQ - cot A © 091} (31)
21 —gdeot L 6 =7 g
0 ¢l /] 1
9Yy = JF [-cos §y, =-sin §, cos i, -sin @, sin i] (32)
39, P
d V% = pt U dcsc AG + csc A 6 9 LI-2
"y [( - _t) dcsec A6 + Pt cscAae _97T2
-~ _dcot A @ ]} (33)
) ¢2 .
a% =~ o (34)
2 %,
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w&'c
JS
| S|

aV‘t.2 H - Py U dcsc A O +tcsc Ao 0
AL -/ H Py U,
7% Pt T2 0% o4
+ U 1 - R ) dcescAe - Pt csche 9T

+ _dcot AG (35)
N
a% _ o (36)
EEN
Lo - /E [ » - dcschQ +1 cescAO _9 T2
= i~ t U —_— ——
aaz Py 6 =l 2 ¢2 : Ty 2 ¢2

- (l-p_t) [g2 dcsc NG + csc A O 39—2]

ry a¢2 6¢2
u
+ U, _dcotAO + cot A © _9=2 (37)
> "o, aﬁz}

%%2 - /p_i‘z“__ [—cos #,, -sin ¢2' , O] (38)

The remaining undefined terms in Eqs. 31 - 38 may be computed from

the following expressions:

39 _ [-sin @ cos @, cos i, cos @, sin i (39)
= 1 » ’

EN [ 1  sin 1]

6!2 =~ |-sin @, , cos @, , O (40)
%, [Fotn 22 2> °

2

ory . Tyesin (B - @) (41)
d al ’ pl

aTy _ Tilepsin (f, - w)) (42)

g, P,

0cscAG = -cscAe cot A J Ao J=1, 2 (43)
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dcot AQ = - csc?Ae J A6 3=1, 2 (44)
29, 28,

The following convenient expression for A © allows computation of
the remaining derivatives:
A = cos™l (cos ¢l cos ¢2 + sin @, sin ¢2 cos i) (45)

940 0 - (-sin §1 cos f; + cos @) sin @, cos i) (46)
o9 N '

'\Ai (cos f cos ¢2 + sin ) sin @, cos 1)?

0A @ - (~cos §, sin §, + sin @, cos P, cos 1) (47)

0, -

'\/l ~ (cos @) cos @o + sin @ sin @, cos 1)2
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ITI. ADAPTIVE STEEPEST DESCENT

Since setting Eqs. 21, 22, and 23 equal to zero yields no general
analytical solution, one is faced with numerically solving an ordinary
calculus problem requiring the minimization of a function of 3 variables.

Successful use of a numerical search which stepped in the negative
gradient direction was reported in Refs., 4, 7, 8, and 9. However, this
procedure proved to be inadequate for the more sensitive function spaces.
Attempts to employ Newton-Raphson methods were similarly frustrated by the
nature, structure, and multiplicity of minima of typical impulse function
spaces.

The present "adaptive steepest descent" procedure effectively
overcomes the convergence and accuracy limitations of the previous methods.
A numerical search employing Eqs. 1 - 47 is terminated when the following

necessary conditions for a local minimum have been achieved:

a1 91 a1 (48)
afL = 28, =< oF, = O

During the n'th step of the search the gradient vector is computed

and the n + 1'st coordinate vector is determined as follows:

A 6] 5y 1 [ey]
1 2o o 1
J
| = |9 -a % ol |8 J=1,2,0r3 (49)
P P s
t t g
R g L RS

where a 1is the current magnitude of the step size, the 8y are variable

scaling parameters, and 8, 5 82 » and gy are the components of a unit vector
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in the gradient direction. Note also that the scaling matrix is normalized
relative to one of the scaling parameters. Eq. 49 is employed to construct a
sequence of points at which the impulse function, I (@1, f; py), is evaluated.
An additional constraint on the process requires that the sequence of
impulses { I (¢l, o, pt)n } be monotone decreasing.

The control logic for the optimization process is rather simple:

(1) If the inequality

I (2, 22 pt) n+1< I1(f, Bas pt)n (50)

is not satisfied, @ is decreased and a new coordinate vector

(81, 8o, pt) n + 1 is computed. Thus, the n'th stage of the

process is repeated until Eq. 50 is satisfied or a < €, €<<0.
(2) Similarly, a is decreased if Eq. 50 is satisfied during each

of a successive number of steps.

(3) The scaling parameters (sj) are decreased each time a
correspénding component of the gradient vector changes sign.

The process control ﬁhilosophy is clearly an unsophisticated trial
and error learning procedure. It does, however, provide a rapid and reliable
method of handling the inevitable scaling problems associated with steepest
descent or gradient methods. While it is true that more exact methods for
determining the scaling matrix are available, such methods involve analytical
or numerical evaluation of higper derivatives(lo). For the class of functions
treated here, it is not clear that this additional sophistication is worth
the cost (analytical and programming) of implementation. The fact that only

a few seconds of IBM 709, time is required to determine a typical local
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minimum is offered as further testimony to the practicality of this

simplified scaling procedure.

CONVERGENCE PROPERTIES

An impulse function space associated with a pair of inclined

elliptical orbits, (pl = 5000 mi, p, = 6000 mi, e = ey =

wy = =90°, w, = +30°, 1 =

precision program incorporating the adaptive steepest descent technique.

0.2,

5°), was investigated with an IBM 7094 double

This

particular function space was previously studies in Ref. 1 by generating an

optimum impulse contour map (Fig 1).

number of starting points have been plotted in Fig. 1.

The descent paths associated with a

This function space

offers no significant problems and the four minima predicted by contouring are

quickly established with required accuracy (13 significant figures) regardless

of the particular descent path.

Table 1 contains the parameters associated

with each minimum as well as the computer time required for the shorter

descent paths.,

Table 1 - Optimum Transfer Parameters

Initial Orbit P, = 5000. mi e =0.2 w, = -90.°0 i =35.°
Final Orbit P, = 6000, mi e, = 0.2 wy, =+30.°0
Optimum ¢l Deg. | @5, Deg. Py, mi. Impulse, fps. 7094 time,|

SecC.
73.8152 | 187.5568 | 6644.8,96 | 4902.65122 3852 | 3.4
40.8343 | 298.2634 6617.7904 | 5343.14,869 3477 2.5
177.811, 73.6465 4,611.8023 | 5393.78114 4757 3.0
308.2034 37.7403 4592.857L | 5654.19120 9679 2.8
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Figure 1 - Descent Paths Plotted on Optimum-Impulse Contour Map
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Figs. 2 and 3 illustrate typical behavior of the various control
and function parameters during optimization of a function having long narrow
features similar to those appearing in Fig. 4. In order to minimize impulse
in this example the program must search down a long narrow "tube" whose
principal axis extends approximately in the ¢l direction. The large initial
increase in the @, scale factor (s1) allows a large §; correction to be
accomplished early in the optimization (Fig. 2). Near the minimum the "tube"
becomes more nearly "disc" shaped. The scaling parameters stablize and
maintain their general "disc" shape as the number of steps exceeds 500.

Fig. 3 illustrates convergence of the coordinate vector's components
(solid lines). Note the large changes in $1, corresponding to the maximum
values of s, appearing in Fig. 2. An additional case involving ordinary
steepest descent optimization (i.e., s) = S, =83 = 1) is presented for
comparison (broken lines). Under this constraint the descent process locates
the center of the "tube" and then begins a very slow movement in the ¢l
direction. Impulse convergence for these two cases is also illustrated in
Fig. 2. Note that the adaptive method continues to minimize long after the
.ordinary'steepest descent process has essentially ceased optimization.

Although the convergence of the adaptive method appears to be quite
slow, it should be remembered that this particular function was chosen for
its difficulty. Fig. 2 also includes data for an optimization involving the
inclined elliptical orbits which produced Fig. 1. For this optimization the
impulse error (I, - I, ) decreases from 10* to 1077 in only 4O steps.
Clearly, the method quickly adapts to the structure of any function and then

proceeds to make good progress toward the local minimum of interest.
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IV. NUMERICAL RESULTS
"AIMOST TANGENT" ORBITS

Several authors have established the non-optimality of ordinary
co-tangential transfers between elliptical orbits and one~impulse transfers
at a point of tangency. (1, 1, 12, 13) However, one easily observes that
optimum transfer orbits usually are nearly tangenﬁ to both the initial and
final orbits. This fact and certain other questions generated during'prior
studies by function contouring 1, 2, 3)'made the class of "almost tangent'
orbits an interesting candidate for further numerical investigation. The
existence of two locally optimum transfers between tangent orbits was
demonstrated in Ref. 1. Further investigation using the adaptive steepest
descent program has established the existence of at least three (3) local
minima in the function spaces associated with a large class of "almost

tangent" orbits.

v In Fig. 4, two optimum impulse contour maps for a pair of tangent
orbits (P; = 5000 mi, P, = 6000 mi, o] = ey = 0.2, Aw = -53° 1301) are
presented in order to adequately display the long narrow "valleys" which are
characteristic of this class of function spaces. Note that the scales are
greatly distorted to amplify certain details and to allow the use of a small
contour interval ( AI = 0.0l fps). |

By constraining the numerical search to planes normal to the axes
of the various valleys one may develop a complete picture of the optimuﬁ
regions of a given function space. In Fig. 5 impulse is plotted as a function
of position throughout the space by first traversing the horizontal valley
(f, = 71°) and then tra#ersing the vertical valley (f; =~ 71°). In Fig.
5b a number of points (a - f) are plotted on the curve for tangent orbits. These

same points are reproduced in Fig. 4 to allow matching of the various
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Figure 4 - Optimum Impx)xlse Contour Maps for Tangent Orbits (contour interval
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structural features with corresponding values of impulse.

The curves appearing in 5b were obtained by rotating the tangent
orbits of Fig. 4 from a nonintersecting orientation ( Aw = -53.° 10) to a
slightly intersecting orientation ( Aw = -53.° 17). Several of these
curves exhibit three local minima. Although the impulse difference between
minima is slight and not usually important in the engineering sense, it is
necessary to isolate the absolute miniﬁum for valid comparisons with finite
thrust maneuvers such as the Lawden Spiral.

Also appearing in Fig. 5b are essentially straight lines corres-
ponding to one-impulse transfer maneuvers performed at the intersection point
of smallest radius. Contensou(l5) and Breakwell(lé) have each demonstrated
the existence of such optimal one-impulse tr#nsfer maneuvers. The problem
of finding these one-impulse maneuvers is discussed in Refs. 17 and 18 which
develop formulae for predicting the range of orbit parameters for which the

one-impulse maneuver is optimum. Figs. 5a and 5c illustrate the effect of

large rotations from a tangency condition. Note that three local minima
persist in Fig. 5a although the orbits are far from intersecting. If
intersection deepens (Fig. 5c) the function space again begins to have small
régions denoting two-impulse maneuvers which require less impulse than the
associated one-impulse maneuver. Fig. 6 further clarifies this relationship
by plotting optimum impulse for both the one and two-impulse maneuvers. The
two curves are seen to coincide over a small range of relative orientation.
INCLINED BLLIPTICAL ORBITS

The existence of optimal coplanar orbital transfer maneuvers

requiring no more than two impulses is discussed by Contensou(15) and
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16)

Breakwell. Extensive investigation using the adaptive steepest descent
program strongly suggests that optimal transfer between classes of inclined,
non-coapsidal, elliptical orbits also requires a maximum of two impulses.
It follows that optimal one-impulse maneuvers between inclined elliptical

orbits must also exist.

LAWDEN SPIRAL VS. TWO IMPULSE TRANSFER

In Ref. 19 Lawden discusses the possible optimality of a particular
intermediate thrust spiral trajec;tory. Using a contouring technique the
authors of this paper demonstrated the existence of optimum two-impulse
- transfer maneuvers which require less total A V than the corresponding

‘Lawden spiral maneuvers (20, 21).

Using the adaptive steepest descent program,
these numerical results have now been expanded to give a broad comparison of
the two-impulse maneuver and the Lawden spiral.

The orbits which oscillate to the Lawden spiral are generated by
varying the parameter 8in? v which denotes position on the spiral. In
Fig. 7 the difference in velocity change required for both maneuvers
(A Vig - AV2—imp) is plotted as a function of position difference

between the osculation poiiits. A family of curves was generated by varying
sin® ¢  of the initial orbit.
In all cases computed a two-impulse maneuver which required less
AV than the Lawden spiral was found. Numerical accuracy limitations‘
prevented extending these comparisons to smaller values of A si_n2 V.
interestingly enough, all the curves presented indicate that the difference
in velccity change increases as the 4.7 power of A sinzw s which leads to

2
a severe depariure from the Lawden spiral AV as A sin ¢ increases.
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V. CONCLUSION

An effective numerical method for precise computation of optimum
two-impulse transfers between inclined elliptical orbits has been developed
and verified. When supplemented by previously developed function mapping

techniques, (1, 3)

the adaptive steepest descent program has successfully
minimized the most difficult function spaces encountered. The complexity
of the more interesting function spaces suggests that considerable caution
should be exercised when numerically seeking the absolute minimum two-impulse
transfer.

In view of the demonstrated optimality of the two-impulse maneuver
for transfering between a large class of orbits, this proven numerical

optimization program becomes a valuable tool for use in numerous research

and engineering studies.

118




NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

VI. REFERENCES

1. McCue, G. A., "Optimum Two-Impulse Orbital Transfer and Rendezvous

Between Inclined Elliptical Orbits," AIAA J. 1, 1865-1872 (1963).

2. Des Jardins, P. R., Bender, D. F., and McCue, G. A., "Orbital Transfer
and Satellite Rendezvous (Final Report)," SID 62-870, North American

Aviation, Inc. (August 31, 1962).

3. McCue, G. A., "Optimization and Visualization of Functions," AIAA J. 2,
99-100 (1964).

4. Kerfoot, H. P., Bender D. F., and Des Jardins, P. R., "Analytical Study
of Satellite Rendezvous (Final Report), "MD 59-272, North American

Aviation, Inc., (October 20, 1960).

5. Lee, G., "An Analysis of Twp-Impulse Orbital Transfer," Studies in the
Fields of Space Flight and Guidance Theory, Progress Report No. L,

NASA MTP-AER0-63-65, 167-211 (1963).

6. Herget, P., "The Computation of Orbits," (published privately by the
author, Ann Arbor, Michigan, 1948), p. 30.

7. Des Jardins, P. R., and Bender, D. F., "Extended Satellite Rendezvous
Study," (Second Quarterly Report), SID 61-459, North American Aviation,

Inc., (December 15, 1961).

8. Hoelker, R. F., "Orbit Transfer Studies by Numberical Processes,"

MTP-AERO-61-24, George C. Marshall Space Flight Center, (March 24, 1961).

119



NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

9. Kerfoot, H. P., and Des Jardins, P. R., "Coplanar Two-Impulse Orbital
Transfers," ARS Preprint 2063-61, (October 9, 1961).

10. Powell, M. J. D., "A Rapidly Convergent Descent Method for Minimization,"
The Computer Journal, 6, No. 2, 163-168, (July 1963). - .

11. Lawden, D. F., "Orbital Transfer via Tangential Ellipses," Journal of the
British Interplanetary Society 2, No. 6, 278-289 (1952).

12, Bender, D. F., "Optimum Coplanar Two-Impulse Transfer Between Elliptic
Orbits," J. of Aerospace ﬁng. 21, 44-52 (1962)

13. Li-Shu Wen, Wm., "A Study of Co-tangential, Elliptical Transfer Orbits
in Space Flight," Journal of the Aerospace Sciences 28, No. 5 (1961).

1,. Ting, L., "Optimum Orbital Transfer by Impulse," ARS J. 30, 1013-1018
(1960).

15. Contensou, P., "Etude Théorique Des Trajectories Optimales Dans Un
Champ De Gravitation. Application Au Cas D'Un Center D'Attraction Unique.
(Theoretical Study of Optimal Trajectories in a Gravitational Field.
Application in the Case of a Single Center of Attraction)," Astronautica
Acta Vit 2.3 (1943); also Grumman Res. Pransl. Tr-22 by P. Kemneth
(August 1962).

16. Breakwell, J. V., "Minimum Impulse Transfer," AIAA Paper 63-416.

17. Benaer, D. F., and McCue, G. A., "Optimal One-Impulse Transfers Between
Coplanar Elliptical Orbits," North American Aviation, Inc., (October 196L). .

18. Bender, D. F., "A Comparison of One and Two-Impulse Transfer for Neafly
Tangent Coplanar Elliptical Orbits," Studies in the Fields of Space Flight
and Guidance Theory, Progress Report No. 5, NASA TM X-53024, 155-182
(March 17, 1964).

120




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

19.

20.

21,

Lawden, D. F., "Optimal Intermediate-Thrust Arcs in a Gravitational
Field," Astronaut Acta 8, 106-123.

Bender. D. F., and McCue, G. A., "Numerical Demonstration of the
Non-Optimality of the Lawden Spiral," Presented at the 1lth Technical
Meeting Concerning Space Flight and Guidance Theory, MSFC

(December 19, 1962).

Breakwell, J. V., "Unpublished Private Communication with Derek F. Lawden,"

Lockheed Missiles and Space Co., (December 18, 1962).

121



N6 330

OPTIMAL ONE-IMPULSE TRANSFER
BETWEEN COPLANAR ELLIPTICAL ORBITS
Prepared by
David F. Bender and Gary A. MéCue
Space Sciences Laboratory

Space and Information Systems Division
North American Aviation, Inc.

Special Report No. 8
October 1, 1964

Contract NAS8-5211

Prepared for

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Huntsville, Alabama

"NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

123




TECHNICAL REPORT INDEX/ABSTRACT

ACCESSION NUMBER

6968464

DOCUMENT SECURITY CLASSIFICATION

Unclassified

TITLE OF DOCUMENT

OPTIMAL ONE-IMPULSE TRANSFER BETWEEN COPLANAR ELLIPTICAL ORBITS

LIBRARY USE ONLY

AUTHORIS)

David F. Bender and Gary A. McCue

CODE

ORIGINATING AGENCY AND OTHER SOURCES DOCUMENT NUMBER

NAA - S&ID SID NO. 64-1859

PUBLICATION DATE

October 1, 1964

CONTRACT NUMBER

NAS 8-5211

DESCRIPTIVE TERMS

33055

ABSTRACT

124

maneuvers are presented.

Numerical and analytical results concerning optimum one-impulse orbital transfer
By considering a class of "shallowly intersecting" coplanar
orbits which may be produced by differentially changing the orbital elements of a pair
of tangent orbits, one may derive a number of approximate expressions concerning the
-minima of the one-impulse maneuvers that occur.
transfers and corresponding optimum two-impulse and optimum 180° two-impulse transfers
were made. These comparisons suggested that there exists a narrow range of shapes over
which one-impulse transfer is optimal and indicated analytical expressions bounding the
region for the equivalence of one-impulse transfer and optimum 180 degree two-impulse
transfer. Simple exact equations which define outer bounds to the range of shapes
over which one-impulse may be optimal were then derived.
of these expressions immediately establishes the non-optimality of a one-impulse transfer
between any given pair of coplanar orbits.

Aot
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Numerical comparisons of one-impulse
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NOMENCLATURE

Scalars

a ' Semima jor axis

e - Eccentricity )

£ True anomaly

€ True anomaly half angle between intersection points

i Inclination

J Impulse

M Gravitation constant

p Semilatus rectum

P Vr/R

9 :ngle denoting true anomaly of line which bisects angle

w Argument of perigee (initial orbit relative to final orbit)
Vectors

P Unit vector in perigee direction

Q Unit vector 90° ahead of perigee vector

v Velocity vector

Subscripts

T Tangent

1 Initial orbit parameter, or intersection point of smallest
radius

V2 Final orbit parameter, or intersection point of largest radius

3 180° two-impulse transfer parameter

m Minimum
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I. INTRODUCTION

During the course of a continuing study of optimum orbital
transfer maneuvers (Refs. 1, 2, 3, 4, 5) the class of "shallowly intersecting"
orbit pairs was shown to be worthy of further study. For such orbits,
numerical data indicated the existence of one-impulse orbital transfer
maneuvers which resulted in minimum fuel expenditure; a result which has
been discussed by Contensou(é), and Breakwell(7). It one must find the
optimum transfer between a pair of non-coapsidal, "shallowly intersecting,"
coplanar elliptical orbits, it is clearly desirable to determine if a
one-impulse maneuver is optimal before proceeding with two-impulse
optimization techniques such as those described in Refs.., and 5. Furthermore,
it is known that the impulse function spaces associated with such orbit pairs
offer a formidable and time consuming challenge to numerical optimizétién
techniques.(S) This is largely because these function spaces are structured
in the form of long narrow "valleys" containing several minima.(5)

Therefore, a strong motivation for developing formulae for predicting and

evaluating these favorable orbital transfer maneuvers exists.
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II. GEOMETRY OF SHALLOW INTERSECTIONS

Consider two coplanar, non-coapsidal, elliptical orbits that are
nearly tangent and are described by the elements: Py, P = P2p1
where p2 = p2/pl > 1, el#o ep #0, wy =0, and wy = w#0. For
P =P the orbit intersections must lie 180 degrees apart and
this case is therefore excluded because a shallow intersection is to be
characterized by a small true anomaly interval between the two points of
intersection, Finally, one may restrict w to the range, 0 < w < 180°
without loss of generality since only the angular difference between the
perigee vectors (P; and 22) is required.

The geometry of the shallow intersection is shown in Fig. 1. Let

the line FB lie at the angle § from Py, and let it also bisect the angle

vetween the two intersections (2€ ). If € is small, and, O <2e€ < 180°:

sing = e, sin w/D (1)
cos § = (e, cos w ~ pzel)/D - (2)
cos € = (p2 - 1)/ (3)
where,
D2 = pl‘ e12 + 322 - 2 p'?‘ e e, cosw - (1)

The true anomalies of the intersection points, of smallest and largest radius
are f - € and § + € respectively. Let the subscript "T” denote tangent
orbits and assume that the elements Ps el, e2, and w differ by small amounts
( 8p, Sel, Se,, Sw:) from their values at tangency, and furthermore,

assume that these perturbed orbits intersect. Since the tangent condition
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Figure 1 - The Geometry of Shallow Intersections
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requires that:

2 _ 2 2 _ L 2 2 2
Dp* = ( p* - 1) = pre’y - 2 p° e e, cosw t e, (5)
for € << | one may write
1 - cosen _€° ¢ d (cose ) (6)
2 Z Sa;
da;
j:l [A

where @; ; are the four elements: p , e1s €55 and w
Clearly, Eq. 5 may be used to find the value of an element that will yield

tangency if the other elements are given.

Thus, € = -2 Y d cose Sa (7)
j=1 da j j
Although shallow intersection may be generated by differentially changing

any of the four parameters, only changes in w will be considered for

brevity in the numerical comparisons. For small changes, 3w , one may

assume wT = W and,
D° - DT2 = 2 p2 o, &, [cos w g - cos (wp + Bw )] (8)
~ 2 2 . e. sinw Sw (9)

P 12
and
P \/
€ ~ 2e, e,s8nw dw : (10)
WLES! 172
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III. OPTIMAL ONE-IMPULSE TRANSFER

One and two-impulse transfers between coplanar orbits have been

(®) (9) (10)

investigated by Ting °, Horner Although these authors

, and Barrar
did not specifically consider nearly tangent orbits Barrar does mention the
possibility of optimizing one-impulse transfer on orbit orientation
It is convenient to adopt the notation of Ref. 11, and to express velocities

"and impulses in units of ,/, /p;. Velocity vectors (v, and !2) in the

initial and final orbits may then be defined as follows:

oy =Lty | (11)
I

S R =L e %) (12)
I

where V is a unit vector perpendicular to the radius at the transfer point
and Q; and QQ are unit vectors perpendicular to the perigee vectors (See

Fig. 1). The impulse for the one-impulse transfer maneuver, is expressed as

follows:
Y@ -p) + ¢ . (13)
J P

where
C = e, Q - Py Ql ()
, :
J P2=C2+(l—p)2+2(l—p)§_ v (15)
2 = ¢ - ¢ = Pzel 2 -2 pey e, cosw + e22 (16)
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and
C+V = e;cos(f - € - w) - pe cos (f - €) (17)
where the angles (§ ~ € ) and (§ - € - w ) are the true anomalies of

the transfer point on the first and second orbits respectively. By using

Eqs. 1 and 2 the angle @ is eliminated and Eq. 17 becomes:

= 2 .
c-V = coge E° + SJ"SG (p- 1) pe; e, sinw (18)
where
B2 = 52 o2 - (1 + p) pe + e,? (19)
P 1 - P P 1 32 cos W 32
Finally,
2 ' 2
j2P2 =C' + (p - 1) 2 —Z(p— 1) [% cos €
(p -1) pe e sinw sine ] (20)
+
D

One can now compare the impulse for the tangent condition, (jT), with the

—————  ————impulses for the two points of intersection (,jl and 32) by changing the sign

of € in Eq. 20. Clearly, € must be small as must 3 , Sel, 892, and

Sw.
Noting that
I R C R T D N C IR VPTG R (21)
it follows that
2 Cp? 2 p 2
. J - 4= L (L__T_)+(LP-1)-(T-41L)
2dp 2 P2 P2 pT2
’ (-2(P—21)E2 cos € +APT_1)ET2)
2
- 2 -1 i 22
(p ) ;leZ sinw G:I (22)
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If each of the paired terms in Eq. 22 is expressed as a Taylor

series about the tangent condition the leading coefficients will involve
8p, Bey, 8e,, or 8w . Howsver, the term involving ¢ has in its

leading coefficient ,\/87 s «/S_e:l_, «/;:-2, or —\/S_t-u (see Eq. 7).
Therefore, as long as it does not have a zero coefficient the latter will
dominate the expression as small changes are introduced. Since € can be
positive or negative it follows that for one intersection the impulse to
transfer is at first less than that required at tangency, and for the other
intersection it is greater. The intersection corresponding to -€ is
the one with the smaller impulse and smaller radius--a result pointed out by
Anthony and Sasaki.(l2)

If p, ei and e, are fixed and only w is varied, Eq. 22 yields:

j| - Jpn SLG28inw [2E28“’ Lo P - 13 ] (23)

31 (P + Dp2 p D

Removing € by using Eq. 10 gives (for € positive):

in 2 2
oo Rt [2B s, - T e by ]
P D p 1

The terms neglected in Eq. 24 begin with 8w3/2, and 8w has to be positive
in the direction which yields the pair of shallow intersection.A Since the
sign of the coefficient of 38w is positive Eq. 24 has a minimum which is
given by Eq. 25.

(Sw), _ © ¢ sinw (25)
T & p * 1) gk

The corresponding values of ( € )y and impulse change relative to tangency are:

() = P e; ¢ sin w

m p2 -1 20p + 1) £2/D2

(26)
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IV. OPTIMIZED 180 DEGREE TWO-IMPULSE TRANSFER

Determining an optimum Atwc‘a;impulse transfer is in general a three
parameter problem wherein even the conditions for optimum transfer between
coplanar orbits yield extremely unwieldy expressions. By contrast, finding
optimum 180 deg. two~impulse transfer is a two parameter problem and
optimization of one of the parameters is easily accomplished. In addition,
numerical comparisons(l3 ) indicate that optimum 180 deg. transfers closely
approximate the optimum two-impulse transfer in many cases. For these
reasons, and because simplified expressions are available for use in later
derivations, certain equations for 180° transfer are presented here.

Considering optimization of the transfer orbit parameter, the

departure point being fixed but arbitrary, the impulse is given by: _(with

3 = g - xRt (g +opy)? (28)
where
X} = e sinf (29)
X, = e, sin (f - w ) (30)
P
yp = (L + e cos £) |cy - 1| (31)
1l ~ e, cos(f - w)
= 2 (32)
I2 02 I P - C3 l
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and,

(3. - 1) = - : (27)
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where, f = true anomaly of the departure point on the first orbit,
2 _ P
C3 —5%=2/{1+ ey cos f +[l -ezcoa(f-w?/p%

= total impulse required in units of / _*
.pl

and, P; = semilatus rectum of transfer orbit.

(33)
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V. COMPARISON OF ONE AND TWO-IMPULSE TRANSFERS FOR "SHALLOWLY INTERSECTING"
ORBITS .

Numerical results were obtained by first determining the intersection
‘of shortest radius and then ;;arching for the optimum 180 deg. two-impulse
transfer by varying the departure point. A search was initiated by de-
termining what is called a practically optimum transfer in Ref. 13. Numerical
investigations of numerous orbit pairs all yielded similar results. For
purpose of illustration three orbit palrs with very different values of

eccentricity are presented here: 1) p 2 = 1.2, e, = & = 0.2,

wp = cos™t 0.6 = 53.°1301; 2) p % = 1.8, ey = 0.2, &, = 0.6,

Il

wq = 110.3741° and 3) p? = 2.25, 6 = 0.6, e, = 0.95, wq = 63.0498".

One-impulse and optimum 180 deg. two-impulse transfer data is
shown in Figs. 2, 3, and 4. For this example the intersection broducing
element variation was obtained by rotating the final orbit relative to the
initial orbit. The two-impulse curves are seen to coincide with the one-impulse
curves near the minimum, the differences between the two being in the computer
noise (8 decimal places) over a small but finite range of relative orientation.
A few points on the two-impulse curve were investigated by a fully optimized
double precision two-impulse program (Ref. 5) and these points are indicated
by the black dots in Fig. 2. For these illustrations no significant
difference between optimum two-impulse transfers and optimum 180 deg.
transfer is apparent. |

An intersection-producing change in shape can also be generated by

varying e; (or e,) or p . Computer studies of such cases yielded curves

similar to those of Figures 2, 3, and 4. In every case the one-impulse
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142

transfer experiences a minimum near tangency, and in every case the
two-impulse curve coincides with this minimum as it does for the cases
presented.

Table 1 summarizes the results of using the approximate formulae
to predict values of ( 8w)y, (€)y, (Jp - Jl)m for the three cases
illustrated. The values indicated "(pred.)" were obtained from Eqs. 25,

26, and 27 while the values labeled "(comp.)" were obtained by a one-impulse
computer program. The predicted values show good agreement with the actual

values; even for the highly eccentric orbits.
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VvI. THE LIMITS FOR EQUIVALENCE OF ONE-IMPULSE AND OPTIMUM 180 DEG.
TWO-IMPULSE TRANSFER ‘

Figs. 5, 6, and 7 present a sequence of curves for optimum 180 deg.
th—impulse transfer in the region where the two curves are identical. The
first pair of.coplanar'elliptical orbits (;:2 = 1.2, 84 = 0.2,

e, = 0.2) is involved. The single impulse transfer is always at the

point of discontinuity and it is to be noted that the curves include this
particular transfer whether or not it happens to be optimum. Each graph
consists of two curves: one for which the departure point is near the
intersection point and the first impulse is large (labeled "+" and referring
to the positive scale of departure points) and one for which the arrival
point is near the intersection and the second impulse is’large (laveled "-"
and referring to the negative scale of departure points). It is thus seen
that the range of values of w over which the best 180° two-impulse transfer
reduces to the single impulse at intersection can be indicated by requiring
the proper curve to exhibit horizontal tangent as the intersection is approached
from the proper side. (Note the scale changes which were required to plot
the various small differences.) Nearly similar sets of curves were ob£ained
for other pairs of orbits but are not shown. Of course, one may also cause
the set of shapes to be given by a range of values of e or .pz instead of
w . Again a similar set of curves would be obtained, indicating a range of
values of the variable over which one-impulse transfer at intersection is

identical with the best two-impulse transfer (180° two-impulse transfer).
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For all curves on the left of the point of intersection the small
impulse is in the forward direction since the angular momentum (proportional
to pBé) lies between that of the initial and final orbits while for all curves
on the right of the intersection point the small impulse opposes the directlon
of motion. In addition, for every case the + curve is above the - curve on
the left and below on the right. The following condition, therefore, bounds
the optimum one-impulse transfer region:

(a) upper limit; + curve has a horizontal tangent on the right or,

435
= 0, with C3 = p + (34)
£

= +
df fl

b) lower limit; - curve has a horizontal tangent on the left or,

d332
( > = 0, with C3 = 1.+ (35)
df f (180° + f ) -

To express the limit conditions determined in Section V in a more
manageable form, it is necessary to evaluate the slope (dCB/df) and use the
proper sign. In addition, restrict f to f = @ - € 1in all equations and
in the frequently used expression.

pl rl = l + el cos f =1 + 8, cos (f -w ) (36)
p2
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The equations become

(el sin f ~ 2 sin (f- w) [el cos £ + P+l]
P P

+ (1 + e;cos f) ( p - 1) e sinf =

1) Dsine (1 + e cos f) (upper limit) (37)
2p
2) Dsine (1 + ejcosf) (2p -2+ e, cos ) (lower 1limit)
2
2P
(38)
Replacing f by # - € , one obtains equations involving sine ,
2
and cose€ up to the third power. By substituting cose€¢ = _P -1,
D
and sin2 € = 1 = cos?e s, one obtains equations which are linear in

sin € and may be solved easily.

e. e, sinw

sine _ 1% 2(P%2-1) (P -1) D%+ (P2 _1)2 (upper limit)

D 2 Gy

{ eslnw}{z('o —l)(p-l)—

- 1)2][%- 2el(p2 - 1) cos¢/pD2]}
{ -]i’[D (p-2+e1231n2¢
+ D el(P2 - 1) (p=-1) cos p
-1

+ e12 (P2 - 1)2 cos 2 @ ]} (lower limit) (40)

e? = 2

2 2 2
3 p7e° -~ (p t 2p + 3)e e, cosw +(l+_'%_)e2
A simple iteration scheme was programmed to solve Eqs. 39 and 4O. When -
checked by using a double precision program the limiting values for w

corresponded to the expected horizontal tangents in the graphs of impulse

versus departure point.
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In this development the variations in shape were made to occur as
a result of variation in relative perigee angle. The results (Egs. 29 ani 1)
however, are quite general. Thus in order to determine whether or not
one-impulse transfer may be the optimum for any given pair of intersecting
orbits one would evaluate € from cose = ( p° - 1)/D and then determine
whether or not sin € lies in the range sine 1 te sin € u If so, one-impulse
transfer at the intersection with the smaller radius may be the optimum

impulse transfer between the two orbits.
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VII. CONTIUSION

A series of formulae for investigating the existence and propertiss
of optimal one-impulse transfers between pairs of-"shallowly intersecting"
elliptical orbits have been developed and verified. In all cases tested,
each of two different two-impulse optimization programs converged upon
optimum one-impulse transfers predicted by these formulae. Numerical
experiments with orbit pairs-obtained using Breakwell's procedure (7) have
shown that such orbits satisfy the conditions specified by Egqs. 37 and 4O.

As a result one may now discover these optimal maneuvers before proceed
with two-impulse optimization procedures such as those described in Refs. 4

and 5.
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SUMMARY

2805 &

A study has been made of minimum-fuel transfer and rendezvous between
neighboring low-eccentricity orbits by power-limited rocket. This study in-
cludes and extends previous work wherein only the case of transfer between
circular orbits was consldered. As before, the analysis is based on the
assumption that only small deviations from an initial orbit are allowed.
Complete analytical solutions are obtained in three different sets of variables:
(1) rotating rectangular coordinates, (2) rotating spherical coordinates, and
(3) Lagrange's planetary variables. In addition to the determination of
optimal transfer and rendezvous trajectories in three dimensions, synthesis
of the optimal controls is also carried out in each case. The guidance coeffi-
cients resulting from the control synthesis are presented both in graphical
form and in equation form suitable for use in guidance applications.

The use of an intermediate reference orbit is found to be a powerful
method of improving the accuracy of the linearized theory. Results for
circular, coplanar earth-Venus and earth-Mars transfers are compared with
exact solutions. 'The lincar theory is shown to provide a very good correla-
tion with exact data for all trip times of interest. / Aﬁp)

¢

CONCLUSIONS

1. Explicit solutions are obtainable for minimum-fuel transfer and
rendezvous between neighboring low-eccentricity orbits by power-limited
rockets. These solutions include closed form expressions for the optimum
thrust vector, the optirum trajectory, and the minimum required fuel con-
sumption in terms of boundaery condltlons end trip time.

158




€-910098-12

2. Synthesis of the optimal control has also been carried out for both
transfer and rendezvous between any orbit and a neighboring, low-eccentricity
orbit. Guidance coefficients for each case can be presented in terms of time
remaining to reach the target orbit.

3.  Results for the case of coplanar circle-to-circle transfer between
earth and Venus indicate that the linearized equations adequately predict the
actual motion, the optimal control, and the minimum fuel consumption. There
is, as yet, no numerical data to indicate that the rendezvous equations are
equally applicable to the planetary orbits. The fallure of these equations
appears to be caused by the terms representing the angular motion.

RECOMMENDATIONS

The results of the linearized analysis for earth-Mars and earth-Venus
transfers are sufficiently promising to warrant further investigation into
higher-order theories. In particular, the "piecewise-linear" theory des-
cribed herein is a relatively straightforward application of the linearized
equations which should include at least some second-order effects on the
motion. It is recommended that this approach be pursued because a simple
second-order solution is highly desirable.

—INTRODUCTION —

It is characteristic of high-specific-impulse, low-thrust propulsion
systems that the source of power is separate from the thrust device itself.
Consequently, such propulsion systems are referred to as power-limited, since
thrust is restricted in magnitude by the output of the power supply, which is
in turn limited by the necessity of minimizing power supply weight.

The problem of transfer and rendezvous between neighboring orbits by a
power~-limited rocket is of interest for two basic reasons. First of all, the
problem can be solved analytically, as was demonstrated in Refs. 1, 2, and 3,
provided that the thrust acceleration is not constrained in magnitude and
that the proper simplifying assumptions are made in the mathematical model
of the system. The analytic expressions thus obtained for the controls and
for the optimum trajectories then provide insight into more general problems
where the simplifying restrictions are lifted. Secondly, the solution to
this problem provides a lower bound to the performance requirements for low-
thrust orbital transfer and rendezvous.

It is interesting to note that if, for the same system model as has been
used herein, the thrust acceleration is assumed constant, analytic integration
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of the equations of motion requires the evaluation of incomplete elliptic
integrals of the third kind (Ref. 4). Therefore,allowance for variable-thrust
acceleration is essential if simple analytic solutions are to be obtained.

ANATYTICAL METHOD

Description of the Mathematical Model

The phrase "neighboring orbits", as defined here, requires that the
ineclination between orbit planes be small and that the radial separation
between orbits be small relative to the semli-major axis of either orbit.

If it is further assumed that motion in the transfer orbit does not deviate
significantly from these neighboring orbits, linearization of the equations
of motion is permissible.

The analysis has been carried out in three sets of variables: (1) rotating
rectangular coordinates, (2) rotating spherical coordinates, and (3) Lagrange's
planetary variables. The rotating coordinates have been utilized previously
in Refs. 5, 6, and 7, while the planctary variables were applied to an orbit
transfer problem in Ref. k.

The rotating coordinate systems are deplcted in Figs. 1 and 2. Fach
consists of an origin which revolves at satellite velocity in the initial
(interior) circular orbit and orthogonal coordinates measured from this
revolving origin. In the rectangular system of Fig. 1, y' is a radial
dimension, x' is measured tangent to the initial orbit at the origin, and
7' is a coordinate which is out of the plane of the initial orbit and is
normal to both x' and y'.

In Fig. 2, the spherical system is composed of a radial coordinate y,
an arc x, measured circumferentially from the origin, and another arc z,
which is orthogonal to the x-y plane.

The Lagrange vlanctory variables, which are derived from the elements of
an elliptic orbit and urc used in the standard variation-of-parameters
equations of cclertial mechmiics (Lt 8), are convenient because they elimi-
nate the necessity ol trealing singularities for zero eccentricity and zero
inclination in these equations. Ag they are used in this study, the planetary
variables consisti of the nondimensionalized semi-major axis x; = a/ag, a
circumferential distance componeni, x,, and the following combinations of
the remaining orbiial olomenis:

Xg = ¢ 5In w

Xg = € COS W

xg = 8ln 1 sin O (1)
= gin 1 cos

Xg
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in that "fast" trajectories are allowed only when the linearizing assumptions
may be relaxed. On the other hand, fast trajectories are allowed in the
rectangular system because no limits are placed on the component velocities
in the linearizing process.

Analysis

The optimization problem is to derive the optimal control equation for
the minimum-fuel transfer or rendezvous of a power-limited rocket between
neighboring orbits in a given time. Mathematically, this requires minimi-
zation of the integral

t, Tg Te
J=Jo (¢/m)® at = [ (ny/2) A% ar = jo fo (A) ar ﬂ (2)

subject to constraints imposed by the equations of state which may be expressed
in the form

x = f; (x, A) i=1, ... ,n (3)

The control is the thrust acceleration vector, A, in the present case.

— —The problem is treated as a problem of Lagrange in the calculus of veria-
tions. In particular, Breakwell's formulation (Ref. 9) of this problem is
used because the linearized equations in the present case are particularly
well suited to this formulation.

If a fundamental function F is defined as

n
F = "'fo + Z )\ifi ()4-)
i=1

the variational treatment requires satisfaction of Euler-Lagrange equations
in the following form as necessary conditions for the existence of an extremal
arc: :

@, oF

oz (5)
oF _

a8, = ° | (6)
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where e is eccentricity, w is the longitude of peri-apsis, i is orbital
inclination, and Q2 is the longitude of the ascending node. The planetary
variables provide a simple means of introducing eccentricity into the termi-
nal orbits, and the form of the state equations using these variables is
particularly simple in the present problem. However, in a practical appli-
cation, they might be less desirable than the rotating coordinates because
the orbital elements cannot be directly measured.

In view of the foregoing considerations, eccentric terminal orbits have
been allowed only. in the planetary variables in this study, while the analysis
in rotating reference frames is confined to circular terminal orbits.

It should be noted here that the three sets of variables are entirely
equivalent in that the equations of motion may be transformed directly from
one set to another by substitution. There are some differences in the required
linearizing assumptions which should be mentioned, however.

Consider the coordinate system depicted in Fig. 1, a rectangular system
with its origin fixed on the interior orbit (assumed to be the reference
orbit) in the x', y' plane. The mutually orthogonal coordinates x', y', and
z' form a triad that revolves with angular speed ng characteristic of the
reference orbit, so that motion in this frame of reference is relative to a
point on the reference orbit. The spherical coordinate system in Fig. 2 is
described by the arc x in the plane of the reference orbit, the arc z measured
normal to this plane, and a radial dimension y. T

In order to linearize the equations of motion in the first system, it is
necessary to assume that excursions x', y', and z' from the origin be small
in comparison with the radius, r,, of the reference orbit. Motion is there-
fore constrained to a small sphere about the origin. No restrictions are
placed on the component velocities. In the rotating spherical system, only
the assumption of small component velocities will linearize the equations,
whereas the arc x is not limited. The resultant motion is constrained to
a torus about the reference orbit.

Since the linearized equations of motion are identical except for
differences in notation (Ref. 5), one can draw the conclusion that, if in
the spherical system the resultant motion does not involve large variations
in x, the velocity components may be large. In the present study, use of
the spherical system has been assumed throughout, and the results may be
extended according to the foregoing discussion.

In the case of the planetary variables, the linearizing assumptions
require that the difference in the semi-major axes of the terminal orbits
be small and that the eccentricity of the terminal orbits as well as the
eccentricity of the instantaneous transfer orbit be small. The implications
of these assumptions are similar to those for the rotating spherical system

161




C-910098-12

An additional necessary condition provided by the Pontryagin Maximum Principle
must also be satisfied to ensure that the stationary solution predicted by
the Euler equations is actually an extremum. The maximum principle, which
may be expressed as

F (xg, Ay, A¥) 2F (x4, Ay, Ay) (1)

ensures that the stationary solution is an absolute maximum. Furthermore, it
has been shown (Ref. 10) that for a system where both the state variables and
the controls appear linearly in the state equations, the maximum principle

is also sufficient to ensure a minimum of the payoff, J. Since all cases in
the present analyses are linear in the controls and satisfy the maximum
principle, the optimum trajectories described herein are absolute extrema.

Due to the great number of equations involved, the variational analysis
is not described in each case. Only the most important equations are included,
and these are grouped in an orderly fashion in the appendixes. The rotating
coordinate systems are considered in Appendix I, and the planetary variables
are considered in Appendix II. For a more detailed account of the application
of the aforementioned equations the reader is referred to Ref. 2 wherein a
specific case is treated in detail.

Synthesis of the Optimal Controls

____ __ TIn order o put the equations for the optimized controlsimtc a form ~—

compatible with guldance requirements, several changes are made. First, T
in the control egquations is replaced by -1. That is, the equations are
rewritten with "time-to-go" as the independent variable. Secondly, while in
the ordinary transfer and rendezvous analyses in rotating coordinates it was
generally convenient to assume zero initial conditions, the terminals are
reversed in the control synthesis. That is, the target orbit is assumed to
be defined by zero values in most of the state variables. The results of
the control synthesis are expressed in terms of the guidance coefficients,
BAJ/axi, of each component of the control vector, A.

The equations for the control synthesis are summarized in Appendix III
for transfer and rendezvous in each of the coordinate systems. Those equa-
tions which deal specifically with transfer between circular orbits have
been presented previously in Ref. 3.
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RESULTS

Orbit Transfer and Rendezvous

The multiplicity of solutions generated in this study (particularly for
rendezvous) precludes a graphical presentation of all the resulting tra-
jectories., An attempt is made to summarize the results in a reasonably con-
clse form with orbit transfer solutions represented as special cases of
rendezvous wherever feasible.

To simplify the presentation of the results, only circle-to-circle
transfer and rendezvous cases are examined in the summary curves of Figs. 3
through 13. The first set of plots, Figs. 3 through 5, shows the variation
of the components of the optimal thrust acceleration with time for circle-to=-
circle transfer only.

The in-plane components Ax/y, and A,/y, are seen to display symmetry
about the midpoint in time for all trip times, as does the out-of-plane com-
ponent Az/roi. In particular, when T, = 2nm, the components A,/y, and Ay/y,
are constant with time, and the latter is zero. For the coplanar problem,
constant circumferential thrust acceleration is thereby specified as the
optimum mode for integral multiples of the period of the reference orbit,

a result that is in agreement with Ref. T.

Figures 6 through 8 show the thrust acceleration components for circle-
to-circle rendezvous at a particular trip time equal to one sixth of an
orbital period of the reference orbit. The parameter in Figs. 6 and T is
xf/y,T, which takes on the value of 3/& for the special case of optimum
transfer. Similarly the out-of-plane component is plotted with Q, as a
parameter. As indicated, the longitude of the node can have either of two
values, 150 or 330 deg, for optimum transfer.

The payoff, J, can be best represented as the sum of three components,
Jy, Jy, and J,, which are defined by Egs. (A-44)and(A-45) and are plotted in
Figs. 9 through 11. The components J, and J, define propellant requirements
for coplanar rendezvous, while the addition of Jz introduces the out-of-plane
requirement. In particular J is equal to J, for coplanar transfer since the
term x, /y, T, - 3/% in J, is zero for optimum transfer.

All three components, as well as their sum, are seen to be monotonically
decreasing functions of T,. In the limit,as 7, - », A and J - 0. This is a
consequence of the fact that no limit has been placed on exhaust velocity.
Similarly all three components tend to infinity as 7, approaches zero because
zero trip time requires infinite thrust acceleration.

An interesting feature of J; is evident from Fig. 11. For 7,=km,where
k=0,1, 2, ..., Ja is the same for all nodal longitudes, Q,. For all other
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times the envelope of the family of curves is given by the equations

~ 1
R Jamax = T, = lsin Ty (8)
Jantn = L (9)

Ty + |s1n TfI

where the lower envelope is given by Eq. (9) and represents Jsz for optimum
transfer.

Choice of Reference Orbit

It has been observed that the linearized equations are applicable only
for orbits which are not separated by large radial distances. More specifi-
cally, excursions from the origin in the y direction should always be small.
It is apparent, however, that when the reference orbit is chosen to have the
same radius as the initial orbit the excursion, y, to the final orbit is
maximized. A better reference orbit would be one midway between the terminal
orbits since this device would guarantee a radial excursion no greater than
half the distance between the terminals.

Although for the most part, the equations of this report are based on
_______ _ reference orbit coincident with the initial orbit, Eqs. (A-48) through ( (A-51)
and (A-131) through (A-134) are exceptions in thls respect. These equations
are derived to account for an arbitrary choice of the reference orbit and may
therefore be applicable in cases where the ordinary equations break down.

Application to Planetary Orbits

Strictly speaking, none of the planetary orbits are "neighboring orbits"
in the sense in which this term has been defined. Earth's closest neighbor,
Venus, has a semi-major axis, a = 0.7T233AU compared with a = 1.0AU for earth,
leaving a separation distance of 0.276TAU which is not << 1.0AU. However,
using the improvement referred to above, it is possible to apply the linearized
analysis to earth-Venus and earth-Mars trajectories with remarkably good
accuracy. In Figs. 12 and 13, comparisons have been made with exact solutions
from Ref. 11, for earth-Venus and earth-Mars transfers. The circled points
were calculated from Eq. (A-48) of Appendix I using a reference orbit midway
between the two terminal orbits. These results for the special case of
uninelined, circular terminal orbits show only a slight discrepancy in J
for transfer times up to one earth year.
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Extension of the Linearized Theory

Based on the successful correlation indicated by Figs. 12 and 13,a new
theory is being considered in order to account for second-order effects in J.
This theory is a "piecewise-linear" analysis which may be described as follows:
The transfer (or rendezvous ) is divided into two steps, each requiring a
portion of the total trip time. The first segment of the trajectory consists
of a rendezvous from the initial orbit to an intermediate orbit of unspecified
size and shape, and the second segment is a réndezvous from this intermediate
orbit to the final terminal orbit. The expression for J is composed of two
linear expressions for the two segments, and the parameters of the intermediate
orbit are considered as variables which may be optimized so as to minimize the
total J. In each segment an appropriate-reference orbit is chosen so as to
improve the accuracy of the theory.

This approach should provide better results than the linearized theory.
Since the results for earth-Mars and earth-Venus transfers were already good,
the piecewise-linear theory may approach exact results in these cases and
might even yield acceptable results for trajectories to the outer planets.

Control Synthesis'

In this study it has been possible to express each of the components of
the optimal control vector, A, as a linear function of the n state variables.

n
d3A
Ay =T —x (10)
i1 O%

Therefore, the presentation of the results can be confined to curves of the
guidance coefficients, aAJ/axi plotted against time to go, T7'. Using the
equations for the guidance coefficients which comprise Appendix III, the
summary curves of Figs. 14 through 25 were generated.

The synthesized controls for the case of transfer between an arbitrary
state and a nearby circular orbit appear in Figs. 14 through 16 in terms of
the rotating coordinate system variables. The extension to include eccentricity
of the final orbit is provided by use of the Lagrange planetary variables in
Figs. 17 through 19.

For rendezvous the same procedure is followed in the presentation of the
synthesized controls, with the addition of curves to account for the dependence
of in-plane thrust acceleration components on the circumferential distance.

In rotating coordinates, Figs. 20 through 22 summarize the results for rendezvous
between any initial state and a point on a nearby circular orbit.
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As in the transfer case, the planetary variables facilitate the extension
to rendezvous between an initial state and a point on a nearby orbit of low
eccentricity. The results for the planetary variables appear in Figs. 23
through 25.

A1l the curves for the guidance coefficlents display similar behavior.
When time-to-go is short, the curves diverge to infinity (either positive
or negative), but a damped oscillation is evident, causing the coefficients
to approach zero for very long times.
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LIST OF SYMBOLS

;‘I']; Thrust-to-mass ratio
A 11T
n, m
c Integration constant
T Rate of change of a state variable
F Fundamental function
J Defined by Eq. (2)
D Defined by Eq. (A-154)
B Defined by Eq. (A-182)
Q Defined by Eq. (A-181)
% Defined by Eq. (A-146)
A Lagrange multiplier
r Radius
R : Radial force
W " Normal force
S Circumferential force
n Mean angular motion
X, ¥, % J Position components in spherical system

x',y', z' Position components in rectangular system

u, v, w Velocity components in x, y, 2, directions
t Time
T n t

(]
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X3

Xg

Xg

¢
Subscripts

i

Xy ¥,Z,yu,V,W
I

R
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LIST OF SYMBOLS
(contd.)

Time to go
True anomaly
Longitude of peri-apsis
Eccentricity
Unit vector normal to instantaneous transfer orbit
Semi -ma jor axis
Longitude of the node
Inclination
a/ag
e sin w
e cos W
sin i sin Q
sin i cos Q

Angular momentum vector

Index denoting x, ¥, 2z, U, V, W
;ndex denoting x, ¥, 2

Initial condition

Final condition

Denoting state variable
Intermediate reference orbit

Radial
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]

W

Superscripts

*

LIST OF SYMBOLS
(contd.)

Circumferential

Normal

Optimum condition

Denotes a vector
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APPENDIX I

ROTATING RECTANGULAR AND SPHERICAL COORDINATE SYSTEMS

1. Equations of State

=%
»x

ar Y (A-1)

gy .
dr (A-2)
o v (a-3)
s A+ Yy (A-L)
A3y -2 (A-5)
_"6!:.. T A -2 (2-6)

2. Euler-Lagrange Equations

Xy = O (A-7)
Ny =-3N, (A-8)
| Xz = Aw (A-9)
Xy = =A+2), (A-10)
Xy = =N\~ 2\ (A-11)
X, = — N\ (A-12)
Ay = NoAx (A-13)
Av = noAy (A-1k)
A = NoAg (A-15)
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3. Integrated Euler-Lagrange Equations

A-16
A = neCo (a-16)
Ay = —6ng(Cq + Cot ~C,cost + Cpsint ) (A-17)
Ay = 2no(CysinT + C4 cost) (A-18)
Ay T ng (3C4+ 3C,T — 4C, cost + 4C, sinT) (4-19)
Ay = 2no(Co+ C;sint + C,cost) (A-20)
Aw = 2ng(Cgqcost - Cg sint ) (a-21)
4. Boundary Conditions
Transfer Rendezvous
State Variable T =0 T:=Ty v =0 Tz2T
Fy 0] FREE 0 LY
y 0 Yy 0 Yy
z (0] 2y 0o 24 _
. o— —_%—Y'HF 5 y'tfﬁ
v 10} (0] 0 (o)
o) 2__2 2) (o) 2.2 2(2)
w To i =24 o I =24
5. Integrated Equations of State (with initial conditions)
x = [ 16(r - sint) - %r’]C‘, + [IS(l~cosr) - 10r sinr]C,
N (A-22)
+[22sint - 10vcost —12t]Cy - [ § r* - 1201-cost)] c4
- 2 . L
y = [8(!—cosr)—3r ]C°+ S[smr -rcosr]C,+ [5rsmr 8(I-oosr)]C,
(A-23)
+ G[sinr -r]C,
(1) REF 6
(2) REF 5
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[roosr - sinr]C, + [rsinr]C,

[le(l—cosr)— %— rz]Co +[6s_inr- lOrcosr] C,

+ [lOr sint —12(1 - cosr)]Cz + [IZ sint -9r] Ce

[8sine-6r]c, + [srsint] ¢, + [ 5rcosr - 3sinr]c,

+ 3[1 —cosr]C,

[—rsinr] Cs + [sinr + T cosr]lcs

6. Transversality Conditions - Transfer

T. Constants of Integration - Transfer

174

A, 2 C =0
Cq tont, + !-E'
Cs i - zﬁ'tonrf
c = yg Sin Ty
: 16(1~cost) - 5 (57 + 3sinty)
— vy (I —costy)
Ca = 16(1=costy) - (57, + 3sint,)
(sint, + 7 cosTy )z, — (TysinTy ) roziz— z,a
Cg : T 2 . 2
[] - Sin r'

(A-24)

(a-25)

(A-26)

(A-27)

(A-28)

(A-29)

(A-30)

(A-31)

(A-32)
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+ (55+ 3sing) (A-33)
16 (1 - cosTy) - (57, + 3sing)

Cq =

Rendezvous

X 3 .
. . ) y,(w% - —4-) (57 — 3sinTy) (aest)
° % 1, (57,— 3singy)(r,2 ~80) + 4(1- cosy N 7ir?~64) + 2487, *costy

' yy SinT, ' + c 3sint, — B(1-cosy) (a-35)
G = 1I6(1=costy) - T4 (571 + 3sinty) ° S5t - 3;inr, =35
-y;(1-cost) N 371 + cosg) - 8sinv,
Ce * 16(1 - costy) - Te( 5ty + I sinty) Co S5ty — 3sinT, (A-36)

(sinty + tecosTy) zy — (TysinT) V. zl!—zfz -

(1’,z - sinzr,)

—g- (57 + 3sing)

C, = - ¢, =+ (4-38)
16(1 — costy) — 7(57, + 3sinty) 2
(fysinty)zg + (Heos Ty — siny) ,/r‘,“"iz - z,z |
Cs s 2 2 (A'39) |
(ry" = sin"vp) |
8. Controls
A, = 3C4+ 3C,tr — 4C,cost + 4C,sint (aA-40)
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) =4
<
"

2 [C°+ C, sint + Cp cost ] (A-k1)

A = 2 [Cs costT - C,sinr]

(a-k2)
9. Payoff
Transfer
2
J (-‘:—:') (5t+ 3sing) i2
s 2 : +
o To 8[r,(5r,+ 3sinTy) - I6(I-cosr,)] T, +isinTyl (A-L3)
Rendezvous
J ¥ \2 yy2f x 3\ 2
TR SRV B A PR -
nosroz l( fo ) z( £ ) T 4 3! (A-hk)
Y, 2 .
S (—rﬁ) (57, + 3sinTy)
ndre? 8[ 7 (57 + 3sinty) = 1601 - cosry] (a-k5)
"fz i Z 3¢ .
N ? (-'o_) (—y,ﬁ‘l‘f— - -4—) (5‘!"-35"\'!")

—34- T (57 = 3siny )(r,z— 80) + 4(1 - cosr,)(?lr,z- 64) + 2481:,2 cos Ty

+ ;2 [ 1, — sinty cos ( 204t 7y ]

(r,z - sinzr,)

10. It should be pointed out that for each free end condition in the case of
orbit transfer, the variational analysis predicts an optimum value for that
particular state variable at the end point. In the rotating coordinate systems
the x and z coordinates are left open at finael time, T,. The end point for
the optimal transfer is then determined in the analysis and is defined by the
equations.
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I+
i / ‘:20571 (A-L46)

3
el

PantnS
Oq '-.~
e’
*
[ 1]

(—;L )’t (A=4T)

-

11. Payoff Equations with an Intermediate Reference Orbit

Let the origin revolve in a circular orbit of radius r; between the two
terminal orbits such that the radial distance to the outer orbit is r,-rp
and the radial distance to the inner orbit is ry-ro. The radii ry, and r,
refer to the inner and outer orbits, respectively.

Transfer
| -1, \2
J -8‘(!17;9‘)(51',+3sinrf) . i2 .
nlerz T T (57 + 3sinty) - 16(1 - cosTy) Ty + | sintgl (A-48)
Rendezvous
R A
J F(T) (57 + 3sinty )
n13r12 T (57 + 3sint ) = 16 (1 — cosTy )
2 2
Ty Xf 3 retro _
?{ W T A ( 0 —2)} (5%,— 3sint;)
+ -
% 1, (57 — 3sint ) rf2—80)+ 4( | —cosy )(7l1'f2 -64) + 2481}2 cos Ty
(A-49)

7,2 — sinty cos( 28l +74)
2 t t t tT
i 2 2
Ty~ —sin‘ry
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12. Optimal Transfer Coordinates

N
- I »
-~
\./*
[
A| w
Iy
P

e
S+
oﬂ
|
N
~——

(A-50)

(%Y: i /Itzcos-rf (A—Sl)
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APPENDIX II
LAGRANGE'S VARIABLES

In the theory of special perturbations, as derived in Ref. 8 for example, -
the equations for rates of change of the elements of an elliptic orbit are
written in terms of the elements and acceleration components S, R, and W,
vhich are perpendicular to the radius vector, radial and normal to the orbital
plane, respectively.

Consider the five elements, a, e, 1, w, Q. The equations for small rates
of change of these variables are

do . 2 . (A-52)
—— = —=——= | eRsinp + S(I +ecosn)
dat nvi-e [ K K ] :
2
_de_ J|-e 2cosm + e + ecos ™M
at [Rsmn N | + e cosq S ] (A-53)
- di /I - 2 : )
d—; = A noe W cos(w+7) (A-54)
dw _ V1-e? [ 2 +ecosn _ e ton Lz sinfw+n) ]
ar nae " Reosn + I +ecosy sinm I+ecosT (a-55)
KU -t W sin{w+m)
’ dt na sini K (A-56)

In order to avoid singularities for zero eccentricity and inclination in
Egs. (A-55) and (A-56) these equations may be transformed according to the
following definitions:

Xz = e sinw

(A-57)
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Xy e Cosw

sini sinfl

»
L~
"

xg = sini cos§d

Under the assumptions

i €< |
Ao = R A = S
R 0o No ' s Qo No
and with the further definitions
- o]
XI = o_o
lq = X

the equations of state for the variational problem may be derived from Eqs.

(A-52) through (A-60).

o,nf

(a-58)

(A-59)

(A-60)

(A-61)

(A-62)

(A-63)

(A-6k)

There is a direct equivalence between these equations and the equations

of state in the rotating coordinate system variables.
Lagrange variables X;, Xz, Xs, ..., X, can be expressed in terms of the

rotating coordinate variables, x, y, z, u, Vv, and W.

Referring to Fig. 26, define a position vector T in nonrotating

coordinates originating at the center of attraction F.

Relative to a rotating rectangular coordinate system originating at O

and rotating with angular velocity n this vector is

180

That is, each of the

Assume the motion
out of the reference plane is uncoupled from the in-plane motion.
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T o= oxi + (r, + y)j (A-65)

where the unit vectors T ana ,J are taken in the x and 2 directions, respectively.
The vector velocity V is obtained by differentiating T.

—

d ? -— -—t i
Vsd: = ui + vj + naxr (A-66)
Since H = nOE, the expression for V is
vV = [u-no(r°+y)]_i. +(v+n°x)'i (A-6T)

Using Eqs. (A-65) and (A-67), expressioﬂs can be written for the angular
momentum C, the path speed V and the radius r of the vehicle

C = 7TxV = [x(v+n°x) - (r°+y)(u-n°(ro+yl)] ® (A-68)

A A L i TS N 7 B

=/ 7T = /xz+(r°+ y)z (A-70)

The following equations can be written for the angular momentum, speed,and
radius of a body in an inverse square field.

JKall-ed (A-71)

iIC

JxiE-Ly s Ji s ag? (a-72)

<
"

—a2
- afl e®) (A'73)
i+ecosn

181



€-910098-12

Combining these equations with the absolute value of E, and with V and r

from Eqs. (A-68), (A-69), and (A-TO),the following scalar equations result.

%— z (l+-,y-)(l+ecos'r;)
[ [}
u y v 9,
- (1+=—) = ——
oo o y
| + T
[ ]
v X /e cos 1
— +— < ——————
n.r a
Y ° g
Finally, noting that
a - - . .
i X, , X, T esinw , x5 T eCOSwW

ecosm = ecos{t-w) = x, sint + xgcosr

the equations relating the coordinates are obtained.

—'o- = {x, = 1) = %y8inT =—xyC08T
.L = T - X% 1
oo = l3 cos 2 sinT
u 3 .
7"0—'0 =2 ( Xy i) 2!2 sNnT ZlSCOST

(A-T4)

(A-75)

(A-76)

(A-TT)

(A-T8)

(A-79)

(A-80)

The Somponents of the out-of-plane motion can be related in the following
way. If N 1s a unit vector normal to the instantaneous transfer orbit and s

is a unit vector in the direction of the line of nodes, then
s

: N x Kk

and, since the angle between s and the vehicle is T - Q,
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cos(t-Q) =5 7 (a-82)

AMlso, the orbital inclination is

Using these parameters the equation for the elevation, z, of the probe is
(A-84)
710- = toni sin(t -8) = sini sin(t -8)
or
z .
To ° T xscosT + xg SinT (4-85)
The out-of-plane velocity, w, is
'n.%o :  xgSINT + xgCOST (a-86)
l. Fquations of State
(A-8T7)
dx,
ar - 2Ag
dx, _ (A-88)
el 2Agsint — Ag cosT
dxg . (4-89)
< ° 2Agcost + Apsint
dx 3
—d—;_‘- * 5 (4=1) = 2x, sinT = 2xycosT (A-90)
dxg .
o T T hwser (a-91)
& = AycosT
dr (A-92)
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5, Euler-lagrange Equations

neAg = 2(A;+\gsint + Agcost )
NoAR = — X, coST + AysinT

NoAw = —Ag sinT + AgcoST

Xa

2A4SinT

2\, COST

Xyt Xg= O

3. Integrated Fuler-Lagrange Eguations

L\

L, Boundary Conditions

n

Ao = 2M4 COST

Aag +2hg sinT

CONSTANT

(4-93)
(A-9%)
(A-95)
(A-96)
(A-97)
(A-98)

(A-99)

(A-100)
(A-101)
(A-102)
(A-103)
(a-104)

(A-105)

A great simplification in the complexity of the equations cen be achieved
by teking advantage of the symmetry afforded by

184

the Lagrange veriables Xg and



€-910098-12

X3 . Therefore, in performing the integrations it will be convenient to use

limits -T,/2 to

T, /2 for the "in-plane" state variables.

Transfer
State Variable . _ T
"in-plane") 2

X, i

x2 X20

X3 X30

Xe Xe0
(out-of-plane) r=0

Xq 0

Xg (o]

5. Integrated Equations of State (with initial conditionsj

Rendezvous
T = r—L T :-I! T = :L
"2 2 2
Ax|'+ | | A"l, + |
lzo"‘ Alzf lzo Xzo + Alz'
Xy + D xy, X30 X30 +Oxy,
’ FREE X‘o l‘o +Al4'
TaT, =0 TET,
Xg, o] Xg,
Xs' 0 IQ'

T2
Bx; ﬁ)\atrﬁ-—%—) ﬂ%m%ﬁi-—ﬁgo( sinT  + sm%—) — 3INJ(Te- Y

D
N
¥

+ —32—- Agol sin’r — sinz—g-)— 2>\4[4(sinr + sin

Oxy = AN sinT + sin —;L) + %—xzo(sinzr — sin®

X
— 30
+3

cosTy oo 2
-ZX,[4(oosr——é—)+ 3(rcost + 2<:os 2

. T
= - 4hglcosT-cos—L) +

2

T,
N
2 )

[5(r+:2f—) + 3(sinT cosT +%T-L )]

ki

2

]

-X—ZQ[ S(r +%)- 3(sint cost+

&

sin T )]

. T
3—) — 3(rcost + %—cos%—)]

|
(A-107)
|

(A-108)
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Bxg =hol 3tr+ -8 1-cos(r+ 1]}

n -3 T 12 gnr —8sin
+x2°{(r+ > )[5cosr+ 6cos 2] > sm(r+2) 5 SinT 8 sin > }
T _ , 3 T 19 T (A-109)
+)\;o{(f+ —2'- )[Gsm% - Ssint ]+ >z cos(r+-§-)— -—z-cosr +8cos-—é—}
L R - h{ OV L (Yl 23
o {160+ 2 —eni-costr + T+ 3(F) + 3e(3)- 3%
+ szo[cosr - cos%-] - wa[sinr+ sin%]
A A -110°
Xy = -2—5 (t —sintcosT) — —2-’ sin®r (a-110)
A A
xg = = -—2’1 sift + -29(1' + sintcosT )
(A-111)°
6. Transversality Conditions - Transfer
Ay = O (a-112)
~2 - tont
\e (A-113)
7. Constants of Integration
Transfer
Ox
—Z-" (57 + 3sinty) — 44x, sin-%
Ag = <
0 T (57 + 3sinty) - 16(1~ costy) (A-11k)
24
Moo ® 2t (a-125)

5T, - 3sin 'r,

Z[qAx,,— 2Ax, sin-%]

hao® v (87 + 3sinty) = (6(1=cosry) (A-116)
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xge (Ty+ sinTycosT) + xgy sin’r,

.xs > f

2(2- sin’r,) (a-117)

Rendezvous
Dxy . : .
—* (57 + 3singy) — A xysin +
Mo ® Ty ( S+ 3sinty) - 16(1 = costy) (A-128)
. i
Aeo*®

%r A:&,(3r,cosrf -8sin i )
18X
Ty (57— 3sinTy) ( |—36r,2+ n-2 (8sin-rz'--Br,cos—T‘,‘_,'-)z l_ 2 K

(A-119)
+ sz,[% r,’+ 87— 3rll-costy) - Bsinr,]
T . .1 o
- [Sr,cos-z'- - Bsm-z-] [ZAu,,sm—Z1 + Drgy + dxggsin £ ]:l
2 [T' Axsf - 2Al” sin '} ]
Ago = _ (A-120)
. T (ST + 3sint,) - 16(1 - cosy)
: 3
Ao = 3 T T - I_G.Tfo"( 50— 3sing)
% (5% — 3sing) (7o +1) - 2(Bsing. = 3Tcos 5 )2
A T, T
- —z—la[llr,cos:z'- + Bsin-af- (1-cosg) - 22sin 2'—] (A-121)
Ax T Dxg
+ (Sr,-SSin'r,)[Tusin-é- + 'Tﬂ+ X3oSiN g—]]
2{:5, (t, + sintcosTy) + xg sinzr,} 2i [rf sinfl, + sint, sin(ﬂ,+r')]
Ag = ) 2 : 2 2 (A-122)
T' ~ Sin T' Tf - sin r'
2{ in? i i Q, - si Q
\ Xge SIN" Ty + xge [Ty — sinTg cosrf)} 2i [ T, cosdl, — sint cos(il+Ty)
[ = s
r,z - sinzr, r,z - sinzr, (A-123)
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8. Controls

No Ag = 2N ;0 — INGT + 2ApeSinT + 2Ny COST (A-12Y)
NoAR 3 2hg — Ay COST + Ay SinT
(A-125)
NoAyw = = Ag SinT  + AgcosT
(A-126)
9. Payoff
Transfer
Ax 2 NOTE: (1)
it . T
J i T(ST, + 3sinty) ~ 4 Axy Axsfsin—zf + T,Axya Axaf2
= . A-12
ndrl T (S51p + 3sinty) - 16 (1 —cosTy) 57y~ 3sinTy ( 7
L
T+ |sinTy|
Rendezvous
2
L (57 + 3sinTy) - 4 Axyg Dy sin Dxgy
J i ' sinT; Xip Oxgesin = + Ty Dxgy
No>ro? 7, (57,4 3sinT) - 16( 1 cosTy)
1 ' % oo 3 12
3 (5% - 3siny) {2Ax2,cos—2- - 2Ax3,sm—é- = Dxg + - 0xy —4xx§m—2'—}
+ (A-128)

T (57 - 3sinty N> 2t + 1) - 2(3ryc0s ~gsin )?

2

2

+Ax2,(3r, cos% —BSin—?){ZAxZ, cosl-zt 20 x4y sin 2 —Bxy + 3 T Ax, 4stin12' }

(57 = 3sing)( 7= r,+|)—2(3r,cos-2L es.n—f-)

T'A‘zfz(ﬁrf +1)

7 (57 - 3slnr)(|6 2 4+1) - 2(37, cos—é —esm—i)

Ve [ T — sint cos{ 2§l +14) ]
]

(r,z— sin? 1)

NOTE: (1) The second term of this equation is incorrect in Ref. 1.
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10. The optimal values for changes in the state variables x, and Q2 are pre-
dicted by the variational analysis in the case of orbit transfer where the

values x4, and Q are left open at the final time.

K T,
AX4* = _2‘ Ts Axlf - 2AX3fSin‘—2f— - 4X3osin%
4Alz' } rf . r' .
5,{_35“1—1'{ 2 wS-E(Sr,—Bsmr,H 31;oos-é--asm
Qf* = nr - -g-

1l.. Payoff Equations with an Intermediate Reference Orbit

Transfer
Axf . LTy 2
J i —8——(51',+ 3sinty) — 4 A%, Axg sin—- + Ts Dxyy
nir? T (5T + 3sinty) — 16(1 - cosTy )

-
|

T +|sinrf|

Rendezvous
2
AXH . . T¢ 2
J 8 (57, + 3sing, ) - 40x, Dxy, sin > + T Oxy,
nrsrl2 ) T(57,+ 3sing) — 16(1 - cosy)

! ) T, LT
3 (St~ 3sint) ‘{2 Oxy cos —2'- - 2 Oxyy sm—zf- -

(A-129)

(A-130)

Bxgy®

-+ ——
S5ty—3sinT

(A-131)

2
3 . T
Axg + Trf( xp+xy—-2)- 4x3°sm—21}

+
r,(5r,-3sinr,)(%r,2+l)- 2(3'r,cos%-85in-%-)2 ) |
N Oxgyl 3r,cos-%' - Bsin% {2 szfcos-r—z'- -2 Oxay sin%— -~ Dxg+ %rf(x,o-}- Xy — 2)—4xysin 12'-}
T (57 - 3sint)( -%r,2+l) - 2(3r,oosr—é -Bsinr—,é,'-)z
+ TfA"zfz(%"fa"")
7 (57 - 35inr,)(%rf2+ 1) = 2(37 coszzf- - esin%— )2
+ i | i —s::'fz:zsz+ T')] (A-132)
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12. Optimal Transfer Coordinates

Ax.‘ = %—Tf( X0t X4 = 2) = 2Axy sin T—af - 4x3°sin-12'-
A-133)
4 Bxyy | - ; . (
+ —— L X el T 5
5t — 3sinty { 2 952 (37 - 3sing) + 37ycos - — Bsin 2}
L (A-134)
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APPENDIX ITI

SYNTHESIS OF THE OPTIMAL CONTROLS

A. Rotating Coordinates

4
e

Control Equations

oA A
A
y 0yy+0uu+
oA, 9A,
A, = 3y y + 35 Y +
oA, 0A,
A,=azz+aww

Guidance Coefficients - Transfer

2.

dAy _ 12 'l’.
ayy @
0A, _ 24
du T d
OAl o2
ov T d
oA, _ 12
o9y &
a, 6
du Y
oa 24
ov e ]

(1 =cost')(29 — 27cosT')

(I —cost') (il sint' - 3r'cosT' ~ 8B7')

(572 + 3¢ sint' cost’ - 8 sin’r' )

. 1))
(81 — Il sint* 4+ 3rrcost )| —cost)

M noTE ¢

0A,
ov

—_— [ 70t'sint* —~ 5502 4+ 187 sintrcosT+ 3(1 —cosT)(5 ~ 27cosr')]

[ 6512 — 80T sint' — 247 sint’ cosT—(| - cosT')(25~- 103 cos ' )]

LB
du

(A-135)

(a-136)

(A-137)

(A-138)

(A-139)

(A-1%0)

(A-141)

(A-1k42)

(A-143)
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0A, _ =2 sin?¢ (A-1kL)
9z r? —sin?r

0A;, _  —=(2r'-sin27) )
ow v - ginte (A-145)

where

® =480T -75 3 — 240t'cost’ (| + cost') — 144 sinT'( | —cost) — 2137’ sin v
(A-1L46)

3. Rendezvous

Dye to the length and complexity of the synthesized, in-plane, control
equations for rendezvous, the guidance coefficients are not written explicitly
here. Instead the basic equations are tabulated, and the coefficlents calculated
from these equations are plotted in Figs. 20 through 22.

a‘: 2 BET -3 3, T - 4-57i-cosr-—4-ai-sinr- (A-1h7)
9a, . _(OC, 9C,  9C,
—O_IT = 2(0_1, - T‘T sint' + .OT,- cosr) (A—lh8)
N 0A, + 0A,
t 3z ow " (A-149)
x P ¢, P Po P2 P
- y ¢ b2 Poa C = P Y Pz Pa
A " by P P ' b0 %2 Pa
v Py Paz Pas b0V Pz Pas
0 (A-150) ° (a-151)
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Po P x Pra $o P P X
Cz . ¢20 ¢2l y ¢24 ) C. = ¢zo ¢2l ¢22 y
Po Py U P * P Py P Y
b Pa v Pas b0 Py Pz Vv
0
o (A-152) (A-153)
where
¢l0 ¢“ ¢|2 ¢l4
b= P Pu Pz P
b0 Py Pz P
Yo P P P
(A-154)
and
3 1 ) . ] ] (]
b0 ° —4—1"-8r + 8sint P = 8(I-cosr)—%r‘
¢, = 8(I-cosr)-5r'sint' ¢y = St'cost’' - 3sint'’
@, ¥ Srcosr - [Isint' + 67 $yp = 5T'sinT' — 6(1-cost)
Pe = 6(1-cost) - %r'z Pag = —g—-r’ = 6 sint’
Bo = 4(1 - cost') - —g—r‘z Pgo = 3T - dsint’ ' (a-155)
¢, = -%— [ T'cosT' - sinr‘] by = %t*sinr'
P2t 5 TSINT = 4(1 - cost) $ez® 3 sinr - Srcosn
¢2‘= "3 (v - sinT) ¢“=-3(l-oosr~)
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oA, ~ 2ssinr
02 2 — sin’r:
0A; _ —(2r'~ sin2r7')
ow 2 - sin?r
B. ILagrange Variables
1. Control Equations
UL SN R W W ax, + 28
3 — —-— Ax —_— —R —R
RZ 38, M T Bx, T2 g 3 T Ak T kg X

_ OAg OAg OAg OAg A OAg
Ag = E'Al' +mAtz+m Ax,+m‘ X, +—a;;olw

wo GAISA" 00xg

2. Guidance Coefficients - Transfer

9AL — 4 sint sin -g

dAx, T(5t'+ 3sint') - 16(1~cosT")

dAgq - 2cost!
94x, Sr'— 3sint’
0Ag 2t'sint’

Olxy 57+ 3sint') - 16(1 - cosT)

0A 8 cosT'sin % - -é—(Sr' + 3sin7)
57 + 3sint') - 16(1 ~cost')

OA! . 4gint'
OAxg Sr'=3ginr’
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(4-159)
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3.

g

oa,

0lQxg

oA
aAX°

oA

cost sin’t’

r2- sinzr'

- '5 cost( 21~ sin27))

2 — ginr

4(2sin lz'-'- Tcost')

0Axy

(57 4+ 3sint') - I6( | ~cos T

Guidance Coefficients =~ Rendezvous

4 sinT'sin -E _ %r{ 5t — 3sint'+ 2cosT( 3r'oosr-' - 8sin LT )]

O x

2 2

Q

8

(A-166)
(A-167)

(A-168)

(A-169)

dAg  2r'cost( % ™ 4+ 1) + cos % (5t'- 3sint') + 2( 3r'cos§- Ssing)(li-cost‘cos-‘z:l)
Ohxg B8 (A-170)
0Ag _ -2rsinT' + sin-% l5r- ~3sint+ 2cosT( 3T cos-g - 8sin % )]
0Dx, - Q 8 (A-171)
OAg -|2— [51"- 3sint' + 2cost'( 3r'cos-£—' - Bsin-rz—' )]
Ax, B (A-172)
0Ap 2 sin -g [ 5t'=3sint' + 2cost{ 3t'cos %. -8 sinrz-' )]
Oxgy B (A-173)
OAg —'2- (5t + 3sint'-16 sin%—l cosT)
0lx, ) Q
—3—!"[ 3r(S5Tt -~ 3sinT) + Bsint{ 3T'Cos = -Bsinl)] (A-lTh)

16

2 2

B
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dAS 4r'sint{ % 2 41) + ‘% T'COS -g( 5t — 3sint)
o - B (A-175)
2

( 3r'cos-§ - 8sin %' Y( 3r'+ 4sintcos % )

8

+

d0Ag  4(t'cost’ - Zsin-g )

Y Q. . . (A-176)
" L sin L[ 37 (57 — 3sint’) + Bsint{ 3r'cos 5 - Bsing )]
+ 2 2 2 2
B8
dA —I—[ 3T (57T' - 3sint') + Bsint( 31"cos% -~ 8sin -g )]
s . .48 (A-17T)
0Qx, B
. T ] . ] . ' ' L' - . T_'
dA¢ ] s.n3[3r‘(5r - 3sint') + 8sint(3t'cos 5 8 sin 5 )] (A-178)
dxw 8
OA, 2sint'(T'+ sin21)
OOx o B - sin?t (A-179)
O0Ay . 2 [sinr' + cost{T' ~ sin 2r')] (A-180)
0lxq r* - sinr’
where
Q = 16(1~cost) - T{ST + 3sint) (A-181)
B = (57 - 3sinT')( TSé 241) - 2( esin-;_-' - 3r'cos%-' )2 (A-182)
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SPHERICAL COORDINATE SYSTEM
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GUIDANCE COEFFICIENTS FOR OPTIMUM CONTROL
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GUIDANCE COEFFICIENTS FOR OPTIMUM CONTROL
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GUIDANCE COEFFICIENTS FOR OPTIMUM CONTROL
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GUIDANCE COEFFICIENTS FOR OPTIMUM CONTROL
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AN APPROXIMATION TO LINEAR BOUNDED
PHASE COORDINATE CONTROL PROBLEMS*

E. B. lee

1. Introduction
In many control problems both restraints on the magnitudes

of the control variables and various system variables may occur.
Certain results [1,2,7] are available for the determination of
optimal controllers for some classes of linear and nonlinear
systems involving such restraints. These results take the form
of necessary or sufficient conditions for optimal control but
not both, and are therefore only a partial solution to even

the theoretical problem, leaving much to be desired in the

way of a practical solution, To use the necessary or suffl-
clent conditions for synthesizing an optimal controller it

18 necessary to solve a two-point boundary value problem in
terms of a number of free parameters and multipliers where

the number of parameters is not even known as well as certain
Jump conditions [2,7]. A backing out procedure [9] 1s also
available if one is interested in flodéding the domain of
controllability with responses and then keeping track (storing)
of the corresponding control magnitude for each such point.

We here offer a procedure which has several advantages
over the above schemes, but is only an approximate solution.
Its main advantage 1s that no discontinuities will be encoun-
tered in the adjoint solution which determines the optimum
controller and therefore the resulting two point boundary
value problem may be more readily solved. The results provide
both necessary and sufficient conditions, as well as existence,

*Prepared under contract NASw-986 for the NASA.
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for the approximate problem,
The analysis 1s limited to linear control processes as
described by the differential system

£) x = A(t)x + B(t)u(t).

The coefficient matrices A(t) and B(t) are composed of known
continuous functions on the time interval [to,tl]. The con-
troller u(t) 1s to be chosen from a set Q:lujli 1; J =1,2,...m,
so as to steer the response, xu(t), of £) from an initiil
point X0 at time to to a preseribed compact target set GerM
and 1t 1s required that xu(t) remain within a given constraint
set, A, during its entire response. Here R? 1s the n dimen-
sional real number space.

The problem of time optimal control, as considered in
the next section, is to find a controller u(t) which steers
xu(t) from x to G CA in minimum time, that is, minimizes
C(u) = t; - t, with x(tl)e G and xu(t) €At L Lt
Later, in section 4, we discuss other optimum control cost
functionals.

n A
(¥ §

£P2 s
A 14 1 L

14+
1CuLv

al les involved when one

directly solves for this optimum controller. We shall there-
fore be content with solving the following apparently.simpler
problem: Find that controller u(t) with graph in Q which
steers xu(t) from x_ at t_ to G at t, with xa(tl) < B and
t, - t, a8 minimum. xa(t) is defined below.

It is assumed that A is a closed convex set, (for
convenlence we could even let A = {x|x'H x £ ¢}, where H is
a positive semi-definite matrix and ¢ = constant > 0.) Let

F(x) be a convex continuous differentiable function which is
such that

F(x) # 0 if x ¢ A

= 0 if x e A 225



Then defineT

t
®(t)) = jtl F(x,(t))at
0

x (t ) essentially measures the excursions of the response
(t) to a controller u(t) outside of the region A during the

time interval [to 1] By keeping x (t ) small theresponse
xu(t) is restricted to stay close to or within A. The above
minimum time optimal control problem i1s approximately solved
by finding a controller which steers iu(t) = (x8(t)x,(t)) from
(0,x o) to &= {x°,x|x e T, 0 < x° < B} in the minimum time
1nterval t, - t, 1f 8 > O 1s sufficlently small.

In the next section we give necessary and sufficient
conditions for this approximation problem using the time
optimal criterion. Section 3 contains an example and section
4 1s a discussion of the approximation problem for other cost
functionals.

2. The necessary and sufficlent conditions for the approximate
linear time optimal problems
- We augment the system ¢ by consldering the equation system

tThere is, of course, some question as to whether such a
function F(x) exists for an arbitrary convex set A contained
in RN, We now cite an example which shows that there are
such functlons 1in a number of interesting cases. Suppose
A= {x1, x2,...x0]] Ym< 1}. Then pick F(x

=1/2(x2 - 1) 1f x° >

= 0 if |x |
= 1/2(x% + 1)% 1f x2 ¢ -1

Thus if only one coordinate (or a linear combination) is res-
tricted the problem 1s easlly handled as in the example,

where F(x) is continuous and has continuous’ partial derivatives,
Other A's can be approximately handled as in the example.

226




) % = F(x)

= A(t)x + B(t) u(t)

obtained from g) by adding the equation for x° with x°(t ) =
Here A(t), B(t) are bounded and continuous on Et bty ] and
F(x) is a convex function with F(x) = O for x e A 3—(x)

is assumed to exist and be continuous everywhere.

The set of attainability K(tl)Can+1 is-the collection
of end points X (t,) of responses iu(t) = (x2(t), x,(t)) of
£ which initiate at (O,xb) at time t_ corresponding to all
(Lebesque) measurable controllers u(t) which are such
that |ud(t)] < 1 on [t ,t,], for § = 1,2...,m. (Such
controllers are referred to as admissible controllers.)

In the following theorems we establish various proper-
ties for K(tl) and Bﬁ(tl) as required in synthesizing optimal
controllers,

Theorem 1 Consider the above system E) with initial point
X, restraint set 1, and set of attainability K(tl).

Then K(tl) is a nonempty compact subset of_Rn+1 in variables

(x°,x) with convex lower surface (as defined below) for each
t(t < .

Proof K(t ) is nonempty since any measurable controller
u(t)c Q gives rise to an end point x (t )e K(t ). K(t )
is compact because the system £) satisfies the hypothesis
of the existence theorems of references 6, and 8.

The lower surface of ﬁ(t) is where exterior normal
n+l vectors 1 to K(t) at points of Bﬁ(t) have their first
component no.S 0. Ve now show that if §1 and ig are points
of K(t ) then the point y = XX + (1- k)x = (y°,y),
0 < i 1, 1s such that
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aﬁd

where u(t) = 2 ul(t) + Sl-x) u,(t) and ul(t) and u2(t) are
such that iu (tl)=.§18m =Xy (t]}=x2. The convexity of the
lower surfac® of K(tl) then follows because in order for
it to be nonconvex it is necessary that there exist two
points ﬁl, X,, on this lower boundary, with Ehe property that
the point X X, + (1-2) §2 is below the set K(tl) for some
0 < A <1, which will then be impossible.

With u(t) = X ul(t) + (1-2) ue(t) we find that

!

x-(t

t
2(t) = @t )x, + Jtl o(t,)e" (s)B(s)i(s)ds

(o]
r [ete)ng + [72 o(t,)873(s)B(s)u, ()as]
: t
o

B . tl -1
+ (1-2) [;(tl)xo + Ito Q(tl)ﬁ (s)B(s)uz(s)dgl
=2 xul(tl) + (1-2) xug(tl) =

Ax, + (1-)) x, =¥

2

1

where p(t) i1s the fundamental solution matrix of ¢ with
m(to) = I. We also calculate

t
xg(t,) = jtl F(xg(t))dt
(o]
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and A xu (t ) + (1-2) X2 (t ) for comparison. Since F(x)
is a con&ex function of % 1t follows that for 0 < A £ 1,

F(xz(t)) = F(x %y, (8) + (1-2)x, (£)) < Fx, (£)

+ (1) B, (0))

and so

.

° t1 t1
xg(t,) = Ito F(xz(t))dt = Jto F(\ xul(t) + (1-)) xue(t))dt

<A jzl F(xul(t))dt + J:l (1-x)F(xu2(t))dt = y°.
(o] o]

Q.E.D.

We will now consider those controllers u(t) on [to,tl]
which steer X (t) from x at to to poi?ts il contained in
the lower boundary of K(t ) (written BK'(tl)). Such controllers
will be called extremal and they will play a significant part
in the selection of optimal controllers.

Let u(t) e @ on t <t <tbean admissible controller
for the convex control process

43) x° = F(x)
x = A(t) x + B(t)u(t)

with initial point x = (0, X ) at t,. If the corresponding
response X (t) has an end point x(tl)eBK (t ), then u(t)
is called an extremal control and x (t) an extremal response

on [t ,t,].
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so that

n(t)B(t)u(t) = Mag {n(t)B(t)u} almost always on [to,tl] .
ue

[Proof: Assume u(t) on [to,t1] 1s extremal and so steers
%(t) from (O,xo) at téﬁto ile bK'(tl) at t;. Choose ﬁ(tl) =
= (no,n(tl))tobe a nonzero vector normal to m directed into the
halfspace defined Ey m which“does not meet ﬁ(tl). Note
T, Z 0, Then let n(t) with n(tl) as above be the response of the
adjoint equation corresponding to the controller u(t).
The controller T a(t) = sgn{n(t)B(t)} defined for
t e [to,tl] is admissible and

n(t)B(t)u(t) = Max {n(t)B(t)u]
uef]

on [to,tl].
Let 7_ be an interval of total length € > O contained
ind = [to,tl] whereon

8 + n(t)B(t)u(t) < Mag {n(t)B(t)u} for some & > O.
ue

For given 8 > 0 consider the modified controller
ue(t) = u(t) on 8 - T,

= u(t) on Tes

+ sgn {} = -1 1if {} < O
= 0 if {} =0
=41 if {} > O
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The adjoint response 7(t) =»(no(t), n(t)) corresponding
to a controller u(t) is a row n+l vector satisfying the -
differential system

f = -n A(t) - g SEL (x (%))

1, = constant 2 0.

where xu(t) is the response of g£) corresponding to the controller
u(t). Define u(t) on [t »£,] to'be a maximal controller in

case there exists a nonvanishing adjJoint response n(t),

1, £ 0, so that n(t)B(t)u(t) = E%ﬁ {n(t)B(t)u} a.e. on [ty,t1].

In the following theorem 2 it is shown that extremal
and maximal controllers are the same,.

Theorem 2 Consider the convex contro; processt

£) x° = F(x)

x = A(t)x + B(t)u(t)

with initial point io = {0 xo) at tim to. An aumissib¢e
controller u(t)C & on [t ,t ] Ts extremal for £ if and only
If it 1s a maximal controller, that 1s, if and only if there
is a nonvanishing adjoint response #(t) of ’

f = on A(E) - ng &L (x (t))

n, = constant 0

TThe necessary portion of this theorem follows from L. S.
Pontryagin's Maximum Principle (7). For completeness the
simple arguments to establish the necessary part are
presented.
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and calculate

an(t)x,
—at

Aa -
= X + nx_

and

d. t 52 “a ar ' S
= NX + NX, where Xe refers to a response of ¢
corresponding to the modified controller ue(t).
Integration from to to tl yields

- R " t
A(8) % (bg) = AL (5) = [ 1 [-n aC6) + Fx()) Je (2)
(o]

t
+ [ ne)[a)x (6) + B(E)u(e) |- Px (t))at

%

and

A A - t
A69)2(81) = filtg) £(to) = 2 {[-n a(e) + O (x(8)) x(¢)
o

+ n(t)[A(t)x(t) + B(t)u(t)]- F(i(t))}dt for n, = -1.

Combining terms and using the assumed continuity for F and
%;-we easlly find that

ﬂ(tl)ie(tl) - ﬁ(tl)ﬁ(tl) > 8 e + o(e) for e sufficiently
small where o(e) corresponds to terms of higher than first
order in €, and therefore for € sufficiently small

(t)x (t;) -A(t;)%(t;) > O, contradicting the construction

of ﬁ(tl) as the outward normal to K(tl) at il‘
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Hence there exists no such interval Teo S0

n(t)B(t)u(t) = Mag n(t)B(t)u almost everywhere on 9.
ue

Conversely, assume that u(t) and corresponding response
n(t) # O are such that

n(t)B(t)u(t) = Max n(t)Bu
uefl
a.e. on 3 with n 2 0. Let u(t) be any controller in Q
with corresponding response‘xﬁ(t). If we calculate

~

dnxu and dnxa as above,
dt dt

‘and then integrate from to to tl using the assumed convexity
of F(x) we find that

A(ty) £,(67) 2 Aty) xg(t;) = n(ty)d

where W is any point of K(t ). Since lﬁ(t | # o,
and n £ O, the above inequallty implies that x (t ) is
contained in the lower boundary of the compact set K(t )

with convex lower boundary and hence u(t) is extremal
QED.

Theorem 2 indicates that to stay at a lower boundary
point we must continuously steer maximally in the direction
of the vector ﬁ(t). This remark is summarized as a corollary.
Corollary 2.1 Let u(t) on [t ,t, ] be an extremal controller
for s, with corresponding resgpnse X (t) and adjJoint response

n(t) so that,

n(t)B(t)u(t) = Max n(t)B(t)u
uefl
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a.e, on [t _,t;]. Then on each subinterval [t t]c [t _,t,],
u(t) 1s also an extremal controller with iu(r)eéﬁkr).

Moreover n(t) is an exterior normal to K(t) at x(t). '
Proof Replace t., by T in the proof of theorem 2 to obtain
that : »

1

A7) £,(7) 2 A7) Z5(x) = fi(x) Wlv)

for all w(t) in K(t). From this inequality the conclusion
of the corollary can be drawn. '

We next show that the set of attainability ﬁ(tl)
depends continuously on the parameter tl.

Define the distance between a point p and a compact
set GfCRn to be

d(p,d;) = Min |p-g|
geGl

and define the distance between two compact sets Gl’ and
@,C R" to be

d(Gg,Ge) = Max{gaﬁc d(pl,GQ), Mié d(pe,Gl)}. Here
1%1 PaeHa
n
.1
lpl = £ Ip7]
i=1

The set ﬁ(te)C R varies continuously with t, if
gilven an € > 0 there exists a § > O so that for |t2-t1| < 8,

d(K(tq), K(t,)) < e
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Lemma 1 Consider the system f as above with attalnable set
K(t,)c R™*. Then K(t,) varies continuously with t, < .

1

Proof We need only show that each point x(t ) of K(t )
is close to some point x(t ) of K(t ) and conversely. That
is, we need show that given € >0 there exlists a 6 > 0 so
that when [t; - t,] < & there exists x(tl) € K(t ) such
that Ix(t ) - x(t ) < e for each x(t ) € K(te) and con-
versely.

Let u (t) be an admissible controller on [t »t1+1] and

1(t) the corresponding response. For t; < §, 5 ty +1

calculate :

t t
x5 (t,) - x3(ty) = jtz F(x,(t))at - jtl F(x, (t))dt

o o)
and .
x,(t,) = x;(t)) = &(t,) th (s)™ B(s)u,(s)ds
o
- o(t,) Jl (s)71(B(s)u (s) 1ds
O
t
+ [o(t,) -0(t,)] [Jtl o(s)™! B(s)u, (s)as].
o
So

t2
x3(t,) - x3(t,) = jt F(x, (t))dt
‘ l
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and

£
x,(ty) = xq(tq) = ®(t;) jt2 o(s) tu, (s)as
1

+ [olty) - ¢(tl)][j:1 o(s)™} B(s)u (s)ds
o

Since A(t) is bounded and continuous on [to,tl+1] so 1s

®(t) and therefore there exists a constant C; so that

lo(e)| < ¢

and

|o(t)71] < ¢y on [t ,t.+1].

Also since B{s) has bounded continuous elements bg(t) and
ul(t) 1s bounded and measurable there exists the constant

02 so that

t
|I 1 <I)(s)'l B(s)ul(s)ds| < C,. Integration 1s a
t
continu8us operation, therefore, given an € > 0 there exists

a § > O so that

|J21F(xl(t))dt| <3

t -1 €
lItl ®(s)™" B(s)u,(s)ds] < £

for |t-t | < 8 < 1.
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e

Hence

-~ P € '
'xl(t2) - Xl(tl)l < -3-+ Cl -ga-“l‘ -3—0-2— C2 = €

for lﬁg -t <8< 1.

11
The other way we consider ul(t) = u(t) on [to,t1] where
u(t) steers to i(tl) and extend it to [t_,t,+1] by letting
(t) = u(t ) for t € [t ,t1+11 The above calculation is

then repeated to find |x( 5) - x(tl)l < e for lt-tl < 5 <1
and so K(t ) varies continuously with t,.
Theorem 3 Conslider the system s as above with initial data

X, = (o, X ), compact restraint set n, and set of attainability
K(t,). Let the target set G = {x°,x]| 0 < x° < 8, x € Gl where
B> 0 is a constant and G is a compact set of R, Suppose
@ meets the interior of ﬁ(tl), then there is a & > O such that G
meets K(t ) for 1t - ¢ l < 6.

Proof Since G meets the interior of K(t ), there is a point

p €(GN Int. K(t )) and a ball neighborhood N(p) of radius

r > O contailned in K(t }. Consider the hyperplane x° = p®-r/2
of Rn+l
x2...x , X

and in this plane pick n+l independent points Xl,
n41 Of the boundary of the ball N(p), all equally
spaced. Let xl(t), xz(t),...x (t), xn+1(t) be responses

of § with initial data io = (0, xo) and corresponding to
controllers ul(t), ug(t) q+1(t)’ ty < t < t; +1, which
are such that xl(t ) = xl,...xn+l(t ) = n+1 Pick

1> 5> 0 so small that for lt- t 1 < & the p01nts xl(t) lie
within spheres of radius r/10 of the points xl X This

being possible because of the previous lemma 1.

n+l*

237



Consider the convex combination of controllers ul(t) =
= Au 1(t) aup(t) +oohquy (), 2y 20, DAy =1
(Note luy 1 < 1) and the corresponding responses x (t)
of ¥ with initial data (O, X ). PFor each fixed t, It ti1 <8
these response end points xx(t) sweep out a surface section
S which lies below the plane x° = p° by convexity, above or
on the plane x° = O because of the positive nature of F and
intersect the line segment {0 < x° £ p°, x=p} (see proof
of theorem 1). Hence G meets ﬁ(t) for It-t,| < 5 < 1.

We now consider the problem of existence of optimum
contréllers.
Theorem 4 Consider the system 3 ags above with compact restraint
set q = {u] i <1, 1=1,2...,m}<R™, initial point (O,xo)eRn+1
at time t_ and constant compact target set G = {x°,x10 { x° < B,

x€G} for a > 0, If there exists an admissible controller u(t)< g
steering x to G on t £t < tl then there exists an optimum
controller (also admissible) steering X to G in minimum time
duration t¥* - to.

Proot If:(o,xo)e G then t* = t_ and optimum control is not
required. So assume (O,x )¢ G and consider the set of attaln-
ability R(t ) for t, 2 t . Since there is one controller
which steers (o, X, ) to G the set K(t ) meets @ for some

tl > t Define t* to be the greatest lower bound of all

times t such that K(tl) meets G. By the gontinuous dependence
of K(tl) on t, the set of times for which K(t,) meets G 1is

a closed set in R'. Hence t* is the first time K(t ) meets

G and therefore pick as the optimum controller u*(t),

t, £t £ t*, a controller which steers to

K(t*)N a.
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The next theorem asserts that for optimum control we need only
consider points of the lower boundary of the set of attain-
ability and therefore by theorem 2 extremal controllers.

A suffilciency condition is also included.

Theorem 5, Consider the systemgﬁras above with compact
rectangular restraint set 0, initial point (O,xo) at t_

and compact convex target set G = {x?x|0 < x° < B; xeG;

B> 0J. ILet u¥(t) be a minimal time optiImal controller
steering x*(t) from io to G. Then u*(t) 1s extremal, that
is, there exists a nonvanishing adjoint response n(t) =

= (no,n(t)) with n_ < O so that

n(t)B(t)u*(t) = Max {n(t)B(t)u}
uen

almost always on [t ,t*] with 71(t*) an outward normal of
R(t*) at x*(t*) on BK(t*) and 7(t*) satisfles the transver-
sality condition, namely, f(t*) is normal to a supporting
hyperplane 1 of G and the set of attalnability K(t*) which
separates K(t*) from G.

Moreover, if for each point [3] x€G there exists a
nonmaximal controller u(t)<Q so that on € < t < = the
response xﬁ(t) initiating at x = xﬁ(fo) is contained in G,
then when u(t) is an admissible extremal controller steering
X to G by means of a response satlisfying the transversallty
condition it Is an optimum controller.

Proof By assumption there exists a controller steering io

to G so G meets K(t*). Suppose G meets the interior of
K(t*). This is impossible because then G meets the interior
of K(t) for |t-t*| < &, 6 > 0, by theorem 3 and this contra-
dicts the optimality of the controller. Hence oG meets
OR(t*) so that the optimum controller must steer to dK(t*).
We must show that it steers to a lower boundary polnt to con-
clude that it is extremal. This follows at once because

ﬁ(t) always first makes contact with G at a lower boundary
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point as can be seen by considering how the compact set
K(tl) with convex lower surface moves with respect to the
set G. Thus if u*(t) is optimal it is extremal and by
theorem 2 there exists the nonvanishing adjolnt response
ﬁ(t) so that

n(t)B(t)ux(t) = Max 0(t)B(t)u
uef)
where n(t*) satisfies the transversality condition since G
and the lower boundary of K(t*) are convex they can be
separated by a supporting hyperplane T and we choose n(t*) to
be normal to t and directed into the halfspace containing G.

When u(t) 1s an admissible extremal controller steering
io to G and satisfying the transversality condition it
must be an optimum controller if G has the property that
through each point XxeG there passes a nonmaximal response
whiech remains forever in G. This follows because once G and
R(t) come together the interior of ﬁ(t) has a nonempty
intersection with G so that the transversality conditlon
can only be satisfiled once and therefore there is only one
time, namely t*, for which an extremal controller can steer
to G and satisfy the transversality condition. Thus any such
extremal controller satisfying the transversality condition
is an optimum controller,

Q.E.D,

We have therefore reduced the problem of finding an
optimum controller for the approximation problem to that of
finding a solution to the two point boundary value problem
as glven by the 2nt+2 equations:
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x° = F(x)

x = A(t)x + B(t) Max {n(t)B(t)u}
uefl

= o A(E) -y & (x)

Se

Ny = O (ny, < 0)

with boundary conditions i(to) = 20, %x(t*)e d G with 1 (t*)

an interior normal to G at %(t*).

3) An Example of Approximate Bounded Phase Coordinate Time

Optimal Control ’

"We shall consider a very simple example to 1llustrate some
of the theory of the previous section. Consider a simple
mechanlism with posltlon coordinate x and veloclty coordinate
Y. Suppose 1t 1is desired to bring the mechanism to rest by
means of a thrust force u(t) whose magnitude is bidirectional
but limlited to be less than 1 in magnitude and suppose the
velocity is not to exceed .6 in magnitude. That is, consider
the linear system

X =y
y = u(t)

with |u(t)l <1, A = {x,y ||y] < .6}, x(0) = 10, and y(0) = O.
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Pick F(x,y) = %(y - %)2 for y > %
=0 for |y| <
' 2 1
= +3(y + é& fory < -5

We shall later determine the parameter B > 0 so that the
striet bound on-y 18 not exceeded, Problems in which the
bound 1s soft are more easily handled since then we can
generally pick g ahead of time and in:a straighfforward manner
solve the two point boundary value problem. Here we have
picked F(x,y) so that we are constraining the response even
before the boundary of A 1s exceeded in hopes of maintaining
the strict bound on y. To solve this approximate problem

1t 1s merely required that we find a solution of the

system:

.0

X = F(ny)

X =y

& = Max [ngu}
uefl

M, =0 (n,¢<0)

n, =0

. 3F
Ny = N3 - My 35

with x° (0) = 0, x(0) = 10, y(0) = O, x° (1) ¢ B, x(t;) = 0,

y(tl) = 0 for some t; > 0.
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A simple calculation shows that picking g = .08,
n,(0) = -10, nl(o) = -1, 1,(0) ~ -.55 provides a time
optimal solution for this problem., A plot of this response
is given by figure 1., Note in thls problem the exact
optimum solution was obtained, but in general one would pick
different F(x,y)'s to get better approximations,
4) Remarks on the approximate bounded phase coordinate problems
with integral cost

As before consider the linear control process

£) x = A(t)x + B(t)u(t)
satisfying the conditions stated at the beginning of section
1. As a cost functional of control consider

T
c(u) = g(x(T)) + Ito (£ (x,t) + 1° (u,t)}dt

where T = fixed time > t_ and the real functions fo(x,t) and
n° (u,t) are continuously differentiable and f°(x,t) is a
convex function of x for each t.

The problem of optimal control is to pick an admissible
controller u(t) on [t,,T] so that the response x (t) of ¢
moves from X, to a target set YCR! at T, (G may be whole
space) and minimizes C(u) with the entire response xu(t)
contained 1s the closed convex restraint set A.

As before we introduce the convex differentiable function
F(x) satisfying the conditions

F(x) >0 if x £ A

= Q0 1if x e A

The approximation problem is obtained by adding F(x)
to the integrand of the cost functional C(u) to obtaln a
new cost functional

Cx(u) = g(x(T)) + Iz -{f°(x,t) + AF(x) + h°(u,t)}dt
)

~

T ~
= [, (£(x,t) + b° (u,t)lat,
(o]
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here A > 0. If ) 1s suffilciently large then one would expect
that the contribution from the term A F(x) can be small only
if the response stays near A or within it., The approximation
problem is to find that controller u(t) which minimizes

Cx(u) and steers to GCR®,

We shall assume that h°(u,t) 1s convex in u for each t
or that the controller is bounded and h 1s a positive function
of u for each t. In either case the previous theory can be
applied after slight modification by noting that To(x,t) =
= f°(x,t) + A F(x) 1s a convex function of x for each t since
both f° and F were convex functions and by noting the contri-
bution to x° (T) made by the terms h°(u,t). That is, the
problem has now been cast as one which is covered by the
sufficiency results of reference 5 which are also necessary
[reference 7] and can be obtalned as a slight modification
of the results of section 2.
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NOTES ON THE RESTRICTED THREE BODY PROBLEM:

APPROXIMATE BEHAVIOR OF SOLUTIONS NEAR THE COLLINEAR
LAGRANGIAN POINTS

C. C. Conley

Introduction

The purpose of these remarks is to describe in some detail the
geometry of solutions of the restricted three body problem (as viewed
in the rotating coordinate system) near those equilibrium points which
are collinear with the two positive masses.

We deal only with the linearized equations, but make some quali-
tative observations which can be carried over without difficulty to the
nonlinear equations for suitable values of the Jacobi Constant.

This report is intended to be the first in a series whose ultimate
aims include an existence proof for the "'periodic'' solutions discovered
numerically by M. Davidson [1]. Whether or not this can be accom-
plished remains to be seen, but it does seem clear that a thorough
understanding of the behavior of orbits near the equilibrium point will
be required. More will be said about this question in later reports.

From the work in this report we obtain the following qualitative pic-
ture of solutions of the linearized equations for values of the ''Jacobi
Constant' slightly above that of the equilibrium point.

The projections of orbits into the configuration space are consirained
to lie in the region R between the two branches of a hyperbola symmetric
with respect to the line, £, joining the positive mass points, which line
is contained in R.

We will generally restrict our attention to the portion of the phase
space corresponding to a closed interval I of £ about the projection of
the equilibrium point. Recalling that the value of the integral is fixed,
we will see that this portion of the phase space is homeomorphic to
8% X I (S? is the two-sphere) and so may be viewed as the space between
2-concentric spheres together with the bounding spheres.

N65 33058
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[ 4
If I is large enough we will see there there is exactly one closed
orbit in this portion of the phase space. This corresponds to one of the
family of periodic solutions which are known (by a theorem of Lyapounov)
to exist in a neighborhood of the equilibrium point even for the nonlinear
equations.

There are four ""cylinders' in the phase space which abut on this
periodic orbit and which are invariant under the flow. Two of these run
to the outer bounding sphere and two to the inner. One of each of these
two pair of cylinders corresponds to a family of solutions which is asymp-
totic to the periodic solution as the time goes to +w; the others to fami-
lies asymptotic as time goes to -o. These cylinders act as separatrices.
They separate those solutions which go from the inner to the outer sphere
(or vice versa) from those that do not: in the language of the configura-
tion space, they separate those solutions which make a transit of the
region of the equilibrium from those which do not cross this region.

(The existence of such cylinders for the restricted problem is apparent.
Prom a theorem of J. Moser [2] it can be seen that they are described by
real analytic functions near the equilibrium point.)

The projection of these cylinders into the configuration space covers
the union of two infinite strips the boundaries of which are the envelop-
ing lines of the solutions asymptotic to the periodic solution (figure 1).
These four enveloping lines (which are tangent to the hyperbolas bound-
ing R as well as to the periodic orbit) divide R into several regions
and we will be able to determine the nature of solutions in these differ-
ent regions. Further description will be easier to give later.

An amusing result is that exactly one solution from each of the four
cylinders of solutions asymptotic to the periodic solution has a cusp
(as viewed in the configuration space). A modification of this statement
holds as well for the restricted three body problem. These four cusp
points determine arcs on the hyperbolas bounding R, and any solution
which cusps on these arcs is making a transit of the equilibrium region.

A statement which is perhaps a little more useful is that there are
two unique solutions which are ''best" for making a transit of the equili-
brium region in that they take the least time. One of the (possible) dif-
ficulties in using orbits which correspond to the solutions of M. David-
son is the amount of time it is possible to spend in the region of the
equilibrium. * It may be useful to have a simple criterion for decreasing

” )
The values of the Jacobi Constant considered here are small relative
to the ones usually considered.
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this time. An approximate means to determine the ''best' orbit is given
in statement eleven; a more accurate one could be derived using the
result of J. Moser [2]..

As stated above, ‘these remarks have been collected primarily with
a view to later applications. However, it is hoped they are of some
value in themselves in gaining insight into the nature of solutions of
the restricted three body problem.

1. The Equations

Without going through the arguments, we can state that the linear-
ized equation near the equilibrium points in which we are presently
interested form a hamiltonian system with Hamiltonian function:

1 2 2 2 2
(1) H(xy, X2,¥1,¥z2) = > {lyr —wx; 2 + (y: twx1)? - axi + bx*}

w, a, b are positive constants)

The equations are

x = Hy
(2)

y = -Hx.

~ In these equations, w is the frequency of rotation of the coordinate
system; we assume w is positive.

The constants a, b will be arbitrary positive constants in our dis-
cussion. In the case of the equilibrium point between the two positive )
masses of the restricted problem, a = 2b. * If the mass ratio is that of
the Earth and Moon, then with w =1, a is slightly larger than 8.

We introduce the following notation:

ﬁ (XI,XZ,YI,YZ)
-a 0 0 1

(3)
1 0
S = (4 phs T=0 o) I=(, 1 )3

E
This statement is also true of the other two equilibria considered,
however, the next is not.
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7 - (0 I) (3)(cont. )

2
E=(c...\I+S w]I')

-w]J
Our equations are then written as

A1) = 5 (3§, = 1)
A (4)
1 =J Hy = J= 1.

Now to make the computations easier we introduce the non-canonical
transformation

4 = Au
(5)
I 0
A = (w] I)

The equations then transform to:

4 = Bu
0 I (6)

Algsa - (s 207!

B

and the integral is given by

Hu) = A@AQ) = 2(u, Bu)
(7)
E=azAa=( 0

If we now write u = (x;,x,,2;,2;,), the equations above give %; = z,.
Thus if we consider projections of orbits in the x-plane, z = (z;,2,) cor-
responds to the tangent vector.

In'this notation we have for the integral:

H(u) = %(zf +2zf -axt +bxf)

~
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2. The Phase Space

We will be primarily interested in those orbits for which
(8) H = h>0,
and will describe the projections of these orbits in the x-plane.

Statement 1. a) For H =h, the projected orbits arc constrained to move
in the region R given by

R: -axf +bxf < h.
b) If h>0 R is a connected region, otherwise it has two components.
c) If h> 0, the phase space is homeomorphic to S X E' (8% is the
2-sphere, E' the real line). We will be most interested in that part of the
phase space for which lxl I < ¢ > 0. This region can be considered as the

space between two concentric spheres including the boundaries.

Proof: Only part c) needs comment. To see this statement, consider the
line x; =c;. On this line we have

22 +z2 +bxf = 2h+ acf
So the corresponding points in the phase space form a 2-sphere. The rest

follows.

3. Computations

Statement 2. a) The matrix B has one pair of real eigenvalues and one
pair of imaginary eigenvalues. These we denote by

+u, +iv where p,v >0.

b) The corresponding eigenvectors can be chosen to be:

v — iv -iv

1 1 1 1

_{e _|-c _liT - =it
vy = vz =1 _ wp =| | w, =w) = |
n 1 iv ~-iv

po (2 -VT -vT
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where ¢ and, v arereal, o >0; T <0 (cf. e)of this Statement)
c) The general solution is of the form
u(t) = ale“tvl +aze-“tv;_ + 2Re (ﬁelvtwl)
where a;,a, arereal, B is complex.
d) The value of the integral on the solution is
L1 E 6 |2
5 (ult), Eu(t)) =eaze; + IB1%e;

where

"

€ (v1, Evz)
ez = (wy, Ewz)
(Note: the inner product is the real one even when vectors are complex. )
e) The constants p, v, 0, T, €1, €, satisfy:
1) a - 2wop =u?; in particular, p> 0
2) -bo + 2wp = pie
3) a+ 2wty = - V*; in particular, T <0
4) -br + 2wv = -vi7
5) (vi Evi)=-a+boe? +p? +c?p? =0
6) (W Ewy)=-a-Dbr? -v2 +vir? =0
7) (vi Ewp)=-a+ibro+ iy -oprv =0

8) e; = (v; E v;) = —a~ba? - 2 +a?p?

-2(bo? + u2)<o0

-a+br? +v? +vir

)

9) e; = (W Ew,)

[

2(bt? +v%) >0
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10) 2ab(o? + t2) = e, (a + bo?)

11) optv=a ; bre =-puv (from 7))

I

—Zw])

Proof of Statement2: (Recall B = (_g

To prove parts a) and b) and equations 1) - 4) of e), we first observe
that any eigenvector must have a non-zero first component which we can
take to be 1. The form of B then forces the eigenvector to be
u ={1, p, \ pN} where \ is the eigenvalue. Now the last two equations
in the system Au =)\u require that

a - 20\p = \2
-bp + 20X = Ap
Elimination of p gives
A\ + (b-a + 4w?)\?> - ab=0
and parts a) and b) as well as the first two equations of part e) follow.

Part c) needs no comment,

Parts d) and e) follow from general considerations:

Lemma 1. Let v and w be eigenvectors of the matrix J= where =
is symmetric and J is skew symmetric and orthogonal, and let the cor-
responding eigenvalues be A\ and p respectively.
Then either

vy T w) =0,

ANtp=0

Proof: Since J is orthogonal,

(v, = w) = (.'Iv, JZ'W)xp(ffv, w)

(v, w) = (=v, Jw) = \(v, T w).
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The result follows by the symmetfy of £ and skew symmetry of J.

To apply this lemma to our problem we use the fact that, since
B=AlY Z A, the vectors Av; and Aw; are eigenvectors of J=. (The

notation is that of §1.)

Part d) and equations 5) through 9) of 'e) now follow. The remaining
equations and statements in e) are proved with a little algebra. The
harder ones will be seen geometrically later so the computations are

omitted.
Statement 3. If uft) is a solution such that u(0) = (x;,x;, 21, 22 ),
then the constants «, p (Statement 2,c) are given by.

eja; = - ax) - box, - pzy + poz; = (u, Ev,)

eja, = - axy + box, + pz; + poz, = (u, E vyp)

e, = - axp - ib—rx;_.- ivz; -vrz, = (u, Ewy)
Proof: This follows on dotting the equation

u(0) = a;v; + a;v; + Pwy +Pw,

with
Ev,, Evy, Ew, respectively, and using 5) - 9} of Statement 1}.

Statement 4. (Recall that

H(u) = ‘% {zZ + 2% - axf + bx}'}
= ajoe; + lﬁlzez
where e; <0; e > 0).

Consider the projection in the x-plane of solutions in the integral
surface

H(u) = h>0

The solutions in the integral surface divide into classes as follows:
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1) The (unique) periodic solution: a; =a, =0

2) Solutions which are asymptotic to the periodic solution as t —~w
(t > -o):

ap =0 (@, = 0)
3) Solutions whose x; component tends to + o (- o) as t—= % o
ay,az >0 {e1,2, <0).
These are solutions whose projec,:\"ced orbits in the x-space lie
in a half space x; >c¢ or x; <c. They do not make a ''transit’ of the

equilibrium region.

4) Solutions whose x; component goes from -wo to + o (+ o to
-0) as t goes from - to +oo:

a1>0, y <0 (011 <0; az>0).

These are the solutions which do cross the equilibrium region.

Proof: By inspection of the corresponding general solution,

We are particularly interested in the solutions of class 4) which, in
the case of the equilibrium between the two positive mass points, can
be interpreted as solutions going from the earth side of the equilibrium
to the moon side (or vice versa). Clearly the most "efficient'" (least time
expenditure) such orbit is that for which B = 0 since the '"B-portion'' of
a solution contributes only useless oscillation — we will come back to this
point later.

Interpretation for restricted Problem:
Solution 1) corresponds of course to the periodic solution about the

equilibrium point of the restricted problem whose existence is guaranteed
by a theorem of Lyapounov.

The solutions of 2) correspond to the four families which are asymp-
totic to the periodic solution as described in the introduction. Since the
argument of $ is free and can vary on a ''circle, " these four families
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are easily seen to be 'cylinders" which abut on the periodic solution.

One can now check that two of these cylinders '"go to +w'' and two

"to -w0' (as t > +w), i.e., the region of the earth (say) or the moon (resp. )
Again, one easily checks that one of each of these pairs is asymptotic to
the periodic solution as t goes to +w, the other as t goes to -w.

The solutions of 3) are those which enter the region of the equilibrium
only to return whence they came while those of 4) make the transit.

While we have considered only the linearized equations, simple con-
siderations ensure the same qualitative picture for the equations of the
restricted problem. '

2h(a - p?) _
Statement 5. If xZ > aapz = ¢
then a) X122, Z 0= @) X) >0

b) %2 <0=> a,x; >0

Interpretation: If a solution crosses the line x; = c; going away from the
origin, then if ¢; > ¢, the x; component of this solution must tend to

+oo. If a solution crosses the line coming toward the origin, it's x; com-
ponent goes to +o as t—* -o. Corresponding statements hold if

X3 =cCcy <-cC.

In particular, a solution of class 2) or 4) la;a, c
line x; = c, only once and must do so with z; # 0. We will make use of
this remark later.

Also, we can see that a solution crosses both of the lines x; =+ c;
if and only if @;a, < 0. This comment allows us to give a precise geometric
meaning to the statement that '"a solution makes a transit of the equilibrium
region.' A similar definition works for the restricted problem for the same
reason.

Proof of Statement 5.

a) We have (Statement 3)
ej@) = - ax; - box, - pz; +poz,,

where e; <0 (Statement 2),e),9)
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Thus
sgn xga; = sgnaxf + box;x; + pzx; - pOX;2;)
Since X321 2 0, we need only show that
. ax? > lbcxlxz - p.axlz,_l
We estimate (Schwarz)
]bo-xlxz - paxlzzl <L lel(bo'z + pia? )%(bxzz + Zzz)%
Using Statement 2, e) 1) and the energy integral we have
a-p? = bo?+ ple?
bx? + zzz_<_ 2h + a xf

so that

(S

1
lboxyx, - poxix, | < lx:1(a - p2)3( h + a xf)
by
= |x;|(a?x{ + 2ha - 2hp? - ap®xf)?

This last quantity is less than ax{ provided 2ha - 2hp? - apixf <0
which is the hypothesis. A similar proof holds for part b).

A statement stronger than the above can be proved if we place a
restriction on the constants a and w: Namely

Statement 6. Recall the equations are given by

X3 =21 ; Zy - 2wz, + axy

X, = 2; Z, 2w2y - sz’

If

85 h
Xp =C K/ (az _ 4(.028.)
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‘Then z, > 0 implies the corresponding solution never returns to the
line x; =c;. (Also x;(t) >x) Furthermore if z; =0, c; is an ab-
solute minimum for x;. A similar statement holds if

8&h

X3 =cy <~ 3 5
1 ! a? - 4w

Proof: The proof consist of showing that z; >0 under the above circum-
stances. We have: :

lZzl _S_"/Zh'l’ axlz

so that :
4Pzf < 4F (2n+ax) <alxf

The last inequality being the hypothesis. The result now follows.
This statement has no force unless
a? - 4w®a >0

which situation does however hold for the equilibrium point of the
restricted problem between the two positive masses. (a > 8; w =1).

Geometrically, we see from Statement 6 that the points where the
Xp; component of g golution can have a maximum must lie to the left of
the line x; = «/az —4fa” Such a restriction is valid only when

2 ) L) 1 caud Y 1 r :
a® - 4°a >0 as can easily be seen. This remark will be useful in a later
report,

Statement 7

The projection of the periodic solution in the x-plane is an ellipse

with minor axis of length 2 J j:— in the direction of the x;-axis and
) 2

.

major axis of length - ZTJ-(EL in the direction of the x;, -axis.
’ 2

Proof: (Assume B is real.) The projection is given by

if

x; (t) 2 Re(ﬁeivt) = 2Bcos vt

% (t) = -2t In(Be™) = - 2v B sin vt
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Also the energy iﬁtegral gives
B’e; =h

That |l >1 follows from Statement 2, e), 6):

The result follows.

Statement 8. (Recall the solutions with' aja, = 0 are those asymptotic
to the periodic solution. )

a) The envelopes of projections in x~space of orbits with a; = 0
are the straight lines

Xp = -ox * (a- azb)j%‘

h 1
- 0Xp iz,\/g,(o-z +1.2)2.

The corresporiding envelopes for «, = 0 are:

x; = 0%, + (a - 02b) % .

b) All four of these lines are tangent to the boundaries of R (i.e.,
of the region of x-space wherein solutions must move — see Statement 1. )

c) The points of tangency lie on the lines

2bh(a - bo?)
, = iUJth 2 be ==F%'\/2h(a-bcrz)

X

(See figure 1)

Proof of Statement 8

a) If a; = 0 we have (Statement 2)
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- ivt
X} Taze th+ 2 Re(Be )

- iv
-0da,e Mt _ 2T Im(f.’»e1 1:)

X2

~-0x; + 20 Re (ﬁelvt) -2T I.m(ﬁe_lvt

)

The extreme values of x, for fixed X; are obtained by varing arg 8.
These are computed to be

1
Xz = -0X) izlﬁl(o-z +12)?,

Finally, we have lﬁl = N/-éh— from the energy integral which gives one
2

of the alternate expressions in a). Observe that the extreme values are
achieved.

b) We could prove b) by computation; however, the following
geometric argument carries over to the corresponding statement (that
"envelopes of solutions asymptotic to the periodic solution touch the
boundaries of R') for the restricted problem:

We first observe that we can obtain a space homeomorphic to the
phase space as follows: First deform R to an infinite strip (i. e.,
squeeze the boundaries down to straight lines). Noting that at each
point of R (except the boundaries) there is a "circle' of possible vel-
ocities. (i.e., z{ + z# = const > 0) we cross the infinite strip with
a circle to obtain a "pipeli.e., the space between two coaxial cylinders,

The length along the cylinder corresponds to the x; coordinate.
For each fixed x; there comresponds an annulus of points; the radial
variable in this annulus corresponds to x,, while the angular variable
corresponds to the direction of the velocity vector z = (z;,2;). The
inner and outer boundaries of the annulus correspond to boundary points
of R. These boundaries should be identified to (different) points since
zf + zzz is zero on the boundary of R; however, we neglect this point
for the moment.

Now consider the "cylinder" of solutions with «; = 0 say. For
fixed x;, the comresponding points on the cylinder make a closed

loop in the pipe.

Now if x; > c (Statement 5), and a; = 0, then z; < 0. Thus the
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corresponding ''circle' does not go around the hole in the pipe. On the
other hand, the periodic orbit does encircle the hole since the velocity
vector on this orbit goes through all angles. Since the cylinder abuts
on this periodic orbit, some section of it must enclose the hole. It fol-
lows that this cylinder must cross one of the bounding cylinders of the
pipe.

This implies that some orbit with «; = 0 must touch the boundary
of R and so the envelopes of these orbits must cut this boundary.

However, they cannot go out of the region R, and therefore are tangent
to the boundary.

Part c) (and alternate expression in part a})
From parts a) and b) it follows that, for example, the equations
axft -bxf+2h=0
1
xz-—0'x1+2'\/ (2 + 72)2
have a unique solution for x;.
This means the following quadratic equation has double roots:
1
(a - bo)x? + 4bo N (0% + 72)2 - 4b B (0% + 72)+ 2h =
(=F) (=7
The condition for a double root is:

we? B (o2 412) = (a-bo?) (2n- 2R (02 4 22))
2 ez

which reduces to the equation:

ez(a - bo?)
2ab

(e? + 7%)

This equation (which is Statement 2, e), 10}) could of course be
verified algebraically from the other equations of e); the algebra is left
out since the geometric proof suffices.

The remaining computations are now easily completed and similar
arguments complete the proof of Statement 8.
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The following statement enables us to give a fairly clear picture of
the approximate location of those orbits which make a transit of the region
near the equilibrium point (aja, < 0). This picture carries over to the
restricted problem with little difficulty and suggests a '""possible'' means
of giving an existence proof for the periodic orbits of M. Davidson.
(However, the present author has not been able to carry out any proof as
yet. )

Before giving this statement, we state a lemma. In the lemma,
cos~l(y) denotes that angle between 0 and w whose cosine is vy:
(provided |yl < 1)

Lemma:
i -l y
a cosO + P sind > y &> lx - el X cos @ +pz)%
where
cos X ~a; sinX=~p

the equality signs hold simuiltaneously. If ¥* >a? + p%? the inequality
never holds.
Statement 9

Let z; =pcos®; 2z, =psiné,

Let x = (x;,%;) denote any point in R.

ax; + bo x ax; - box,

If vy =- lup i ; Yo = T
cos x1 ~ 1 cos xz ~ 1

sinyy~ -0 siny, ~ ¢

a) Then for IyZlg 1, we haves
-1

Yy

a; 20 <= lo-x,| <cos” Ty

L
b) It follows (Statement 8) that Iyil < (1 +0%)% only in the strip 1
between the lines enveloping the orbits with «; = 0 and that |yil = (1+0%)2
on the boundary of these strips.
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Proof of Statement 9

From Statement 2, we have
|e1|a1 =ax; +box, +tpzy -poz;
leyla; = ax; - box, - pz; - poz,

Replacing z; by pcos6 and 2z, by psiné we set

(ax; + box;)
Y

a; > 0 <==> cos6 + 0 sinbd > -

and

(ax; - box;)

o, > 0 <> cosf + 0 sinb > P

An application of the lemma completes the proof.

Statementl0 (consequence of 9)

From 9, it follows that orbits with @, = 0 cut the line y; = 0
in a direction orthogonal to the enveloping lines of these orbits (i =1, 2).
Thus the lines p, = 0 must pass through the points of tangency of the
enveloping lines with the boundary of R. )

We further observe that to the ''right" of the line vy; =0, x; is
acute, while to the left of the line y; = 0, x; is obtuse. The results
implied by figure 1 are easy consequences. In particular, we see for
example that any orbits in the regions I, I, I'; II, II', II' have
@@, > 0 while those in the regions III, III' have a;a, < 0. The sit-
uation in the strips is not as simple, but is fairly clear.

Figure 1,

1) The (two) solid dark lines through the points A and D are the
enveloping lines of solutions with a; = 0. The corresponding lines
through B and C are the enveloping lines of solutions with a, = 0.
Any solution with a; = 0 or @, = 0 must lie in the corresponding strip
bounded by these lines.
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~
2) At P, the shaded wedge indicates the directions at P for which
the corresponding solution has «; < 0. At P' the shaded wedge indi-
cates a; > 0. Similarly at Q the wedge indicates a, <0, at Q',
@, > 0. On the dotted line AD the wedge has angle w corresponding
to y; = 0. CB has a similar meaning with regard to the strip for a,.

3} The solid lines parallel to the strips indicate the regions where
the corresponding «; > 0 for all possible angles. The dotted lines
similarly indicate where «j < 0.

4) Thus we can see that in regions I, I', I', both of «,, a, are
positive, while in the regions II, II', II'", «; and «, are negative.
Finally in regions IIl, @; > 0; a, < 0 while in III', @; < 0; a, > 0.

5) In the strips we must determine the sign of a from the direc-
tion of the velocity vector: e.g., at P, any solution whose velocity
vector lies in the shaded wedge has «, >0, a; <0, etc.

Thus we have a geometric criterion for determining whether or not a
solution will make a transit of the equilibrium region. Note in particu-
lar that such a solution must stay inside one or the other of the strips
away from the equilibrium, and that as it crosses the equilibrium region
it changes strips. Solutions going from right to left are "'on the bottom'';
those from left to right on top.

We conclude with a remark which may have some "'engineering"
value:

Statement 11. The (two) solutions for which lﬁ | =0 are hyperbolas;
these solutions correspond to those orbits which cross the region of the
equilibrium point the fastest.

(Corresponding solutions for the restricted problem exist and are
well approximated by these — in the equilibrium region — for energies
slightly larger than that of the equilibrium. )

The equation for these orbits are

—a Xy = VT2

-btx, = vz;
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or ’ -1 -1
-0 xi +x# = 2hv¥(br® +v2) b
.Zhv‘2
ezb

-
=

Proof: ‘Statement 8 plus some algebra.

(Note that the left hand side is determined from geometrical con-~
siderations alone, while the right hand side follows by letting x; = 0
and using the energy equation. )

This completes the present collection of statements.
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INTRODUCTION

To date, no closed form solution of the equations representing
minimum fuel flight of a high thrust vehicle operating in a vacuum
under an inverse square gravita‘.tional attraction has been determined.
Optimum trajectories, under these conditions, must therefore be
calculated by numerical methods and iteration techniques.

On the other hand, the powerful methods of classical {(or varia-
tional) mechanics hold promise of solving ''all' dynamical problems.
The "only' difficulty being the establishment of a Hamiltonian function
in a separable form. The solution of "all" dynamical problerﬁs using
these methods will therefore not be imminent pending the development
of a general transformation procedure that will transform the Hamil-
tonian of any givén problerp into a separable form.

This paper presents a brief discussion of the classical procedures,
discusses both closed form and several approximate solution procedures

and shows the level of application to the minimum fuel trajectory problem.
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THE PROBLEM

The physical problem will be taken to be the determination of
trajectories for minimum fuel consumption for vehicle flight in a
vacuum under the influence of a high level, constant thrust and an
inverse square gravity field. This of course is not the most general
problem which could include variable thrust levels, higher order
gravitational attractions, atmospheric loads and disturbances, and
numerous other variables. However, it is general enough to des-
cribe most of the solution difficulties inherent in this type of problem.

The two dimensional equations of motion of a point mass vehicle
subjected to the forces described above may be expressed in cartesian

coordinates as
sin X - ;-l;—x
COSX - ?}L—y

Sim 3|m

where x and y are horizontal and vertical coordinates respectively,

p,lis the gravitational constant, F is the constant thrust, m is the vehicle
mass, X is the angle of thrust direction measured from the vertical

and r is the radius or distance of the vehicle from the center of at-

1/
traction (r = [xz + y?‘] 2. Specifying now that the mass flow m shall
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be maintained at a constant rate K, and introducing new variables as:

q = ).{s qz = .Y’ qs3 = X, q4 = Y, qs = I (2)

The equations of motion in first order form become

. F .
qi "% s1nX-‘r%q3

. F
d2 =—C°SX"r q4

ds
(3)
q3 = q
£14 = q2
as = -K

It is noted, that due to the constancy restriction on the mass flow,
a minimum fuel trajectory is now analogous to a minimum time trajec-
tory. The problem now is to determine the control variable x such as
to insure that any trajectory obtained through an integration of equations
(3) will be a minimum time (fuel) trajectory. It is therefore necessary
to apply some analytical optimization technique. Both the Calculus of
Vari;tiong and Pontryagin's Maximum Principle are usable here and
yield identical results. However, since it will be necessary to have a
Hamiltonian available for later applications, the Pontryagin technique
(Reference 1) will be used.

Defining the auxiliary variables as p; (i=l,...5), the Pontryagin

Hamiltonian function becomes
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F . :
H(p,,q,% = P (p, sin x+ p2 cos ¥ --1*_% (prqs + p2 q4)
+ psa1 +t paqz - ps K (4)
The condition that this function maintain a maximum is then

oH F
—— = 0 = — (p1 cos x- sin (5)
X @ P X - Pz i

from which

Tan x = p1 /p2
Hence
P1 P2
i = 1/2 ; os = 2 2z 6
SIX T (p2 + pd) O X7 (g + p2 t/a (6)

Substitution of equation (6) in (4) then yields
Hip.,q,) = — (p* +p*)% - (pq +p ql+pq+pa =p K
11 ds 1 2 r 173 2 4 371 "4 2 5
(7)
The equations may then be expressed:
q = 6H/8pi ; Py < - 8H/8qi (8)
(1 = 1: "'""'5)

The problem of obtaining the optimum trajectory now becomes the

problem of integrating equations (8).
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APPROACH

The approach used to study solutions of equations 6 is the
Hamilton-Jacobi theory of canonical transformations. This theory
was developed for basic dynamical systems, however it is applicable
to any system whose governing equations may be expressed in first
order form as

a, = oF/op, ; P, é—aF/aqi (i = 1---n) (9)
Where the function F(qi, pi) is not restricted to the Hamiltonian of
classical mechanics, but can be any function which allows presenta-
tion in the above canonical form. It is, however, usually referred to
as the Hamiltonian function or simply the Hamiltonian.

Now, examining the equations (9), it is seen that if one of the
qi(or pi) is not present in the Hamiltonian (i.e. if a variable is cyclic
or ignorable) then the partial derivative of F with respect to that vari-
able is zero and the corresponding pi(or qi) is constant. Consequently,
if the system can be transformed to a new system of coordinates, while
maintaining the canonical form, such that all of the new coordinates and
their conjugates except one is cyclic, then the problem is solved. The
most direct way to do this is to set the Hamiltonian itself equal to the
one non cyclic new coordinate.

FY(P,Q) = Q
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which gives

él = 0 Pl = -1

Q=0 P, =0 (i=2,...n) (10)
Hence all .Qi = constant = ai and all Pi= constant = [31 except
Pl = (pl— t).

It is however necessary to determine the canonical coordinate
transformation required to transform

Flq.,p.)=>F' (Q.,,P,) = Q (11)

"M i’ 1

To do this, it is necessary to introduce a generating function %,
S( q; Pi)a function of one set of old variables and one set of new
variables. The transformation equations may then be written

p. =98S/8q. ; Q =9S/8P, (i = 1...n) (12)

i i i i
S(qi’ Pi)’ however must still be determined. This may be done
(theoretically at least) by substituting the applicable transformation
equation
= 95/9

P; /9q,
into the old Hamiltonian and setting it equal to the new Hamiltonian

F(qi,BS/ aqi) = Q (13)

1

*There will be no discussion here as to the basic differences between
Hamilton's Principle function W and Jacobi's function S. Also S may
take any of the four forms S(qi, Pi)’ S(qi,Q.), S(Qi’pi) or S(pi, Pi) as
needed in a particular problem. A discussion of these areas appears
in Reference 2.
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S(qi’ Pi) is then determined through the solution of the partial
differential equation (13) which is usually referred to as the
Hamilton-Jacobi equation. With S(qi.’ P‘i)' known, the necessary

. transform relations may be obtained from equations (12).

e
1

PJ.(Qi,P'i)
j{l===n) | (14)

%

qj(Qi, Pi)
One further item, the canonical perturbation technique, might

be mentioned before concluding this discussion of the procedure used.

Often, it is possible to divide the Hamiltonian into the sum of two

parts one of which may be considered as a perturbation. The equations

then appear as

oF aF -9F oF

(o] 1 o 1
o= —_ . ; = — % 1
9 api op. p1 E)qi 9q (15)

where F = F -F
o 1

The procedure then is to neglect the F, portion and solve the equations

(16)

using a generating function S(q’P) and the Hamilton-Jacobi relations

to obtain ’

.=q.(Q,,P ; . =p.(Q.,P,
q; qJ(Qi i) P pJ(Ql 1) (17)
These solutions (17) to the first part of the problem ark then sub-

stituted into the original F = F‘o - F and into the original equations (15).
1

274




Then, after several straightforward, but lengthy, manipulations
(See References 3 and 4), the following equations in the new vari-

ables result.

. E)Fl (Pi’ Qi) -8F1 (Pi’ Qi)
% Tee,  C PitTTea (18)

Hopefully then, Fi (Pj,Q;) is in a simple form such ;:hat the Hamilton-
Jacobi equation for this partv of the problem may be solved either com-
pletely or approximately. : -

The net result of these procedures, whether the direct approach
or a perturbation technique is used, is that the problem of integrating
the original equations of motion, equations (9), has been "reduced" to
the problem of finding a solution of the Hamilton-Jacobi equation,

equation (13).
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SOLUTION OF HAMILTON-JACOBI EQUATIONS

Two methods which give closed form solutions to some Hamilton-
Jacobi equations are the method of separation of variables (Reference
2) and a closely related though more orderly method known as Jacobi's
Method (Reference 5). The method of separation of variables is pro-
bably the easiest mgthod of solving the Hamilton-Jacobi equation when
it is applicable. However, in application the method is not well organ-
ized and is quite dependent upon the skill of the op’erator to '"see' the
separation. Also, the question of whether or not the equation is
separable depends upon the coordinates emf>10yed. The restricted two
body problem is separable in polar (or spherical) coordinates, but not
in cartesian, and the coordinates for which the famous three body pro-
blem is separable have evaded investigators for years.

Some in's ight into whetfxer or not the H-J equation is separable in
a particular system of coordinates may be gained through the develop-
ment of a separation criteria.

The real question of separability is the question of whether functions

of the form

pl = Pi (qi’al,_--’an) (19)

can be found so that when substituted in
H(q;,9, » =-=,q,p1,p2 ,-=-p,) = E (20)

will cancel out all the qi's is to be answered,
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Our purpose is to find the condition that the Hamiltonian be
separable with respect to a set of coordinates. If this condition
“is not satisfied in one set of coordinates, then one needs to find the
proper coordinates which satisfy the condition.
Now let us assume that we can find p; as in (19) which satisfies
(20). It follows that P; and its derivative with respect to q; are func-
tions of a single coordinate q;- Differentiate (20) with respect to q

we obtain:

oH oH  9pj
9q,  9p, 3qj

Let us introduce a new function Py of the form:

p; = f(a1,q; ---.q pl,pz,pn) (22)

such that it will satisfy the relation:

SH"_ oH 6. = 0 (23)
E)qi Bpi i

By comparing (19) and (21) we obtain:
api
p;i = - (23a)

and thus Py is a function of 9 alone, since P; is a function of 9

alone by (19). By differentiating (23) with respect to qj, and keeping

in mind relation (22), we obtain
8p, 0p, P
+ i_ .y .
5, ' 9P 3q 0 forj#i (23b)
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From (23a) and (23b), we obtain:
—r_ X5 =0 (23c)

Differentiating equation (23) with respect to qj, and using (23a), we

obtain:
o'H _O'H <87‘H 2\ _fi_I;I(Bpi)_O
"3a 0P P; \sPoq ~oPaP Pj|Fi” 8P i
aqiaqj 9q, i P | 9, P ) 0P, |9q;
) 9p; .
Using (21) and -éq_ = 0, we obtain:
j
8> H 8% 1 GH/BQJ, p2H  92H  8H/dq; \3H/dq; _
- aP oH/oP) “\8P.8q. oP.0P. OH —
99;9q;  99;9%, /3Py \0Py0q;  OPOF OH/OT Jan/ep,

By simplification

o2 oH oH ©0*H ©oH 8H 9°H 9H 9H 9°H B8H 9H _
) P, 9P, ~ ) P, 9P, . aP. aP,dP -
E)qi qj 9 i o] i aqi pj aqj 9 i 2 i qj aql 0 j o ia jaqi qj

(24)

for i,.j =1,2, --=-,nandi#]

Therefore, the necessary condition that (20) be separable is condition (24).
It can be easily shown that the validity of equation (24) isalso sufficient
for the integration through separation of variables.

One intere‘sting case of separability is the case where the motion is
known to be periodic. In this case, the proper coordinates are the action
and the angle variables, and the,H-j equation is separable.

If the H-j equation is separable in more than one set of coordinates,

then this case is said to be degenerate. There is similarity between
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this degeneracy and the general one. Consider the general equation:
QX = QOX
where Q is an operator, Qo is a constant, and X is the characteristic
function. It is clear that for each value of Q'o there corresponds one
or more X. In case there is only one X, then Q is said to be non-
degenerate, otherwise it is called degenerate.
The similarity of the H-j equation with the general case above can
be visualized by taking the Hamiltonian, H, as the operator, Q, the
constant,a, as Qo and the generating function, S as X. If we define the

)
Hamiltonian operator: H = H (ai, Xi’ )

98X,
i
as having the property
) S
H ey X;» BX ) S = Hlap X, axi?

H(e,X)5=5
i

then our H-j equation will take the form:

HS = oS
Thus H is degenerate or non-degenerate according to the number of
solutions of S if it is one or more. This is equivalent to saying that the
equation is separable in one set of coordinates or more.

As mentioned before, '"Jacobi's' method for obtaining solutions

to first order partial differential equations appears more orderly
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than the separation techniques. | Since this method does not appear
to frequent the literature as much as the separation procedures, a
brief development is presented here.

The solution of the H-j equation involves the determination of
the generating function, S. The Hamilton-Jacobi equation may be

written in the form

Flg.,9 , - = -, ,P,P --P =
(q, q, . PP ) =0 (25)
where
9S . . .
F = H-o ; Pi = Eq—— and H is the Hamiltonian.

i
Second, we try to find (n-1) compatible functions to F,i.e. (n-1)

additional functions Fi's, which satisfy (25), i.e.,
F. ,qd s - - s P,P ---P)=a,(i=1,2,---n-1 26
ACH q, PP o= n-1) (26)
where the ai are arbitrai'y constants, Third, the P , P2 , - -Pr1 can
1
be determined from (25) and (26) as functions of q's and a's and such
that these functions, when inserted in the differential relation
dS .= Pdq +P dq + - - -P dq (27)
11 2 2 n n
yield an integrable equation. The result of integrating (27) whereby
an arbitrary constant a is introduced, is our generating function.
Since the proof is too long and cdmplicated in the general case,
let us show the procedure for: n = 3.

F(q ,9 9 ,P ,P ,P)=0 (28)
1 2 3 1 2 3
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Let us find two particular integrals of (28) as follows:
F(q.,q ;9 ,P,P ,P) = a (29)
11 Tz 3 12 3 1
F (q sq -9 ’P 9P ,P) = aZ (30)
2 r Tz 3 1 2 3
where P ,P ,P are functions of q ,q ,q .
12 3 1 2 3
Since F ,F are integrals, the '"Poisson brackets"
12
[FF;] =0 (31)

an

d
[F,FZ:] =0 (32)

Moreover, F; and F; must be compatible, hence

[F F] =0 (33)

1 2
Now solve (28), (29), and (30) for P1 , P, P3 and form
2
dS = Pdq +P dq + P dq, (34)
1 1 2 2 3

which is required to be integrable.

In order to find the relations between the Fi's and Pa's which
satisfy the above conditions, we expand (31) inthe usual form:

9F 9F,  AF 08F, L OF 8F, OF 3F, _9F 8F, OF 8F,

S - -
Bql P, aqz 8Pz 8q3 ) s 8P1 E)q1 BPZ E)q2 8P3 aq3
This is a homogeneous linear partial (differential equation) for de-

termining Fi1. Its subsidiary equations are

dPbP; - dP, _ dP; _dqi _ dg. _ _dg; (35)
dF  OF 9F _3F _9F OF
9q, 5;12 8q_ 9P, oP, T 9P,
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These relations also serve as subsidiary equation to (32) for the
determination of F,« Therefore, if one finds from (35) two in-
dependent integrals F1 = a1 and F, =.az , then all the relations
(31) y (32) an;i (33) v&"ill be fulfilled, and our task is accomplished.
The procedure for thg general case is exactly the same.
If given the partial differential equation

Flqi,92, - = -4y P1, P2, ---P ) =0

then, form the subsidiary equations

dp, _dp, _ __ _4dP, dy __dgqp _ __ _ _dan
3F B®F 9F _ 9k _BF _3E
8q, dq_ 3q_ 9P, 0P, P _

and find (n-1) independent integrals

F.=o0, i=1,2--,n-1
1 1
such that
| E‘i,FJ.] =0 i,j=1,2, - - -n-1 i#]

Theén solve the n equations
F=0 aﬁdFi=ai i=1,2, - - -,n-1

for the P's in terms of q's and a's, and insert thgir expressions in
dS = Pidqy + P;dq; + - - -+ P dq,

Integration of this equation leads to 2 complete integral of S.
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APPLICATION TO THE PROBLEM

Canonical perturbation techniques (using Jacobi's method to

solve the Hamilton-Jacobi equation) may be applied to the problem

of equations (6). To illustrate, consider equations (6)

. OH
= = . A = N
q; op, . A -'8H/8qi (i=1, 5)

with H given by equation (5) as

H = 71; ,pf + p: + P3d1 + P4 92 -p5K - ;r'(plq3+P2 q4)

define
R Y AP 2
Ho = Pl +pz + psar tpaqz - ps K
qs
and
GM
Hi = 73 (p1as + pz gs)

The equations are then expressed
oH, 9H, . _0H, aHl

1. = - ; = — +
94 op, op, Py 8q, = oq,

(i=1---5)

ZERO GRAVITY APPROXIMATION

Consider first the problem

The Hamilton - Jacobi equation for this problem is

F.
pooy i +p5 +psaqs +psqz -ps K-Ps =0

(6)

(5)

(36a)

(36b)

(37)

(38)

(39)
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Where P is the introduced constant. The subsidiary equations
5

(analogous to equations 35) of Jacobi's method are then

dpp _ dp2 _ dps _ dps _ dps
0 o - F
P3 P4 - /pz +p2
ds 1 2 (40)
_ dq ___dq, _ 493 _ dgs _ dgs
-9z K

" -E p1 - F p, -q1
qupz TpZ T as ?pz+pz
1 2 1 2

The third and fourth conditions give

P3 = P3 = const. (41)
Pa = P, = const. (42)
as expected since p; and ps are cyclic in Ho'
From the first and last of equations (40):
P
dpr = - das
Py
= =2 + P 43
P g 9 1 (43)
From the second and last of equations (40)
P
dpz = —K4—dq5
(44)

P
p2 = 45 *Pe

Then, substituting equations (41), (42),(43), and (44) into equation

(39), ps becomes

_E Ps 2, (Pa 2|1/
Ps -qSK{ K 9 + Pp) Jr(K qs + P;)

=) P P
=3 =4 -
TR et g K (45)
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The equation.for obtaining the generating function (analogous to
equation 34) is
dS = p1dai +pz dqz t p3dqs + ps dgs t ps dgs

Substitution for the P; and integrating gives:

P P
= _Igcb + Pr)q + ( tqs + Py)a; + Piqs + Paqs -T{’i qs
P
=dc+ P‘P3+P24z A-[P? +P2 mm B (46)
JP:, +P4
P3 2 4 2
where C = (T{— qG + Py) +(T<-q5 + P,) (47a)

A = 1—2{ [P,2+ P2 C+ (P2 +P2)912— + (P P3+P, Py)l  (47b)
B = é[ /p% +P2 C+ (P} +P3) + (PiP; + P, Py) 9&’-}(47@
5

The transform relations are then obtained from
Q. = 0S/5P,
1 1

as
P, P,

(P -P3Qs5) |
= Q) ~— + in A - ln B
a 1"k { C yP: +P; 7 JPE + P?

; AP1Py 4P Py) | (P + PE)(PL-P3Qs) .
AK JPS + P} C 3

> > o2 2
2\/P1 +P5 [ P, C . P{ +P; épl -P3Qs) + 2P _p3Q5B(48)

BR O, |VF 1P

- P P 2
@ = Q -‘E{PZ PaQs 4 in A-5—2=5"

+

C VP5 + P} P + P3

+

2(P, PatP; Py) | VP + P] (P - P4Qs) |
AK [P +P; C 4 (49)

2VP? + P} [\/Pf + P (P, -P4 Q)

P, C
-4 + 2P, -P4Q
BK Qs P% z2mh4 5]

C VPt +
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Qs + 20, - S{ARIERPa) | o b 4 2C
3 5 1-PsQs + 7
4

a = K | AKJP; + P 2+ P
y APIARE | oo 4 al | et P, + P3Q
BK 1 3 <5 pr +E ﬁi + Pz 1 3 %<5

P; (P P;3+P, P4)] in A

(P} + P%)
B9, g (50)
VP + P
F Z(Pl P3+P2 P4) P4C
= Q4 +Q; Q - —~ -
. 4 T2 s K {AK[P% +P3 P2 -PaQs o7 o7
" 2
+ 2—12—1{‘21[:192 -P,Qs + szp] (51)
P? 2
1
(P, P3+P, P, )P, P, Q
+m [Pz +P4 Q5 - (Pg T PE in A -f—'z‘—jplz +P§ in B
g5 = - KQs (52)

CONSTANT GRAVITY - FLAT EARTH
It is now desired to perturb this zero gravity solution into a

solution to the constant gravity flat earth problem. The equations are

then . \ ) _ .
Q. = E P. = _i};l_ (53)
i P, i 90,
i i
where
H' = Ps -g (P, -P4Qs ) (54)

Specifying a determining function W = W (Qi,)\i), the Hamilton-

Jacobi equation becomes
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oW ow oW

Assuming a solution for W as
W o= Wi(Qi) + W, (Q2)+ W3 (Q3) + Wa(Qq) + Ws (Qs5) (56)

The Hamilton-Jacobi equation becomes

BW; oWy 8W, i}
0, © 8% sq, “Eag, T M 7O (57)

Since the coordinates Q1, Q; , Q3 and Q4, are cyclic, P, ,P; ,P;
and P4 are constants
P, = M3 P, =X\ P3z=Xx3 Pg=XM\ (58)

Hence equation (57) becomes

oW

—2 + g\ Qs -(ghz t ) =0 (59)

Qs
which integrates to give

1

Ws = - g QF + (ghe + %) Qs (60)
W) through W4 are determined from equations (58) in the form
W. = \Q (j=1,2,3,4) (61)

J J ) :

Then, W becbmes

W=Ma0Q + X Qp + X303 +20Q4 + (g)\z + s )Qs5 % MQE% (62)
The coordinates are then obtained from

x; = &)W/&n\i (i=1---5)

which gives
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x1 = @

xz = Q2 +gQs

x3 = Q3

xe = Q4 - g/2Q:

x5 = Qs
and from equation (53)

s = Psi + gPsQs ) gP,
and the new Hamiltonian becomes

H =\

with the equations

1

which gives

% = OH/ox, .\, = -3H/dx,
1 1 1

x. = b, = const i=1,2,3,4
i i

\. = c, = const i =1, --- 5
i i

x5 = t+ bs

Then from 63, 64,65 and 58

Q = b P
Q, = by -glbs +t) P,
Q; = bs Py
Qs = by -% (bs +t)? P,
Qs = (bs t1t) Ps
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= C1

=C3
= Cj3
= C4

=cs +gcz - gca (bs+t)

(63)

(64)

(65)

(66)



Then from equations 43, 44, 52, and 66
pp = a - c3 (bs *1t)
pz = ¢z - (bs t1t)

Such that the guidance angle expression becomes

k; +t

Ta.n X = kO (T(-z_+t) (67)
where
ky, = c3 fea 5 ki = bs =cafecs ; ko = bs =~ cz/ca

and tan ¥ is a bilinear function of time as expected.

FORMAT FOR INVERSE SQUARE GRAVITY PERTURBAT ION
Returning now to the zero gravity'solu’cion of equations 41,

42,43, 44,45, 48, 49,50,51 and 52, Substitution into equation 36

yields the Hamiltonian for the inverse square perturbation term as

GM

H* Py - ?"{(Pl - P3Qs) (Qs - Qs ) + (P2 - PeQs HQ+Q, Q5 )

F 2 2 P1P3+PZP4 \ {4Q)
- = \ L2 T 455 ) oY = 5 POy
K{ V/(Pl P3Q5 ¥ HP, -PsQc ) (_—’——Z_P3 T Pl Q
1 (P Py -P; P3) 2 2 \2 :
+ - (PS5 + P1)Q: + (P P3+P, Ps)Q
@'*‘P& Pg T Pz ( 3 4) 5 ( 1 3 2 4) 5
fen 4|
Q

5
- ’___——Pi' s (PE+P3 - (P P3+P, Py)Qs ) In B]}
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Where A and B are defined in equations 47,

‘The aCCOmpaqying equations of motion are then
Q, = 8H¥/OP, P, = -0H%/oQ (69)
The presence of the numerous radicals and logarithmic terms make
the attainment 6f a solufion of the accompanying Hamilton-Jacobi
equation quite improbable by ordinary means. Thus, the use of this
perturbation method and the Hamilton-Jacobi technique displays little
overall advantage in obtaining a closed form solution to the general
problem.
AN APPROXIMATE SOLUTION - INVERSE SQUARE GRAVITY

The difficulty of obtaining a closed form solution leads to the devel-
opment of an approximate solution which is taken as a first order im-
provement on the constant gravity-flat earth solution. Taking the

complete Hamiltonian of equation 5, the Hamilton-Jacobi equation may

be written

ads

where

F GM . :
= p’ +p} tpsw tpsqz -ps K- 3 (biqstpzas) - Ps =0 (70)

The subs'idiary equations of Jacobi's method are then
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dp _ dpz _ dps - dps

= oM 3 _GM 3
p3 Pe 3 |P - J;f' (p1qstpz 94 )] - —r'r[Pz -;‘%" (P193+pP2 qs )]
= dpi = dql dqz
F 2 2 F P1 GM 9.}_ —R———
“—= Vpi tpz - Mgy
r
o oVt T ot VP1+PZ' 3
d q3 dqs dgs
) ) ) 71
i -~ = (71)

By comparing the above equations with the subsidiary equations of the
flat earth prc;blem it is seen that the primary Vdifferences are in the
denominators of the dp; and dps terms and there is an additional term

in the dqi and dq; denominators. Therefore; let the change in the p3; and

ps terms be of order em over the constant result of the flat earth pro-

blem.
ps = P3 + 2195 4
(72)
ps = P4 + 2295

where €; and ¢; are unknown small constants. Substitution into the

subsidiary equations then gives: from first and last equation

dpp  _ dgs
P;3+2e1 g5 K
- 1
pp = P+ R (P3qs +e€1q5) (73)
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similarly from second and last equation

_dp.  _ 495
Pyt2e; qs K
1
p2 = P2 +R(P4Q5+'z<152) (74)
Substitution of 72, 73 and 74 into 70 and solving for ps gives
1 1 2 1 M2 &
Ps = g {[(Pl +R (P3qs + e1<?1_=% ))' + (P + 'R(P4CI5 tes gt )) ] q_s
+ (P3 + 2¢1q5 ) a1 +(Pg + 2295 )qz , (75)

GM 1 1
- T[{Pl t R (P3qs +61q§))q3 +(P2+R(Pz as +e2 Q3 )) q;}

)

Now, since ps; and ps were approximated it should not be expected that

the p's will make the function
dS = pidqy + pzdq; + psdqgs + padqgs + ps dgs (76)

an exact differential. Therefore further adjustment must be made

in ps to make dS exact. Hence, assume

F 2 2
Ps ={—mK{(Pi’- +Pi) + £ (P3P + PyPalas + o
A | ] M
(P + Pf + 2Ke1 Py + 2Ke, P;) qu (77)

1 1 1
t g (Pst2ags)a tg (Pgy + 2¢2q5)q2 + 2¢1q3t2e2 Qs -Rps}
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Substitution of equations 72, 73, 74 and 77 into equation (76) and

integrating then gives

1 1
S = R(Pz. s +e1as ) + Piqy t & (Psas te2q5 )az + P2 q;

P
. + (2e1q5 + P3lgs + (2¢295 + Py) q4 -‘1?5 qs (78)
VPZ + P} +2Ke, P} +2Ke , P,

-JB + P i B'}

2 2
where C! =\/('Pf + PF) + R (P3P, + P4Py ) g5 + K2

- 7
(P% + P2 + 2Key Py + 2Ke, P, ) g2

2 2
At = = (P1P3+P; Py) + 12 (P3+P2 + 2Ke; Py + 2Ke, P, )as
. R
+ 2y P} + P C (79)
2 2 2
B! = — (P} + PZ)+= (P, Pi+P; Py) + —
o (Pt le) K( 2 P1+P; Py) Ras

pr +P2 +2Ke P, + 2Ke, P, C!
The new coordinates Qi are then obtained from
Q. = 8S/9P,
i i

which may be solved to yield the original coordinates in terms of the

new as
@ = Q - 2(Qs)
* gz = Q2 - g2(Qs)
f
as = Qs+ Qs [ - @(@5)] - 2 (Qs) (80)
0\ £
Qe = Q4+ Qs [Q -g Q)] - F (Q5)

g5 = -KQs 293



Where

g (Qs) = 3G/aP
g (Qs) = 9G/oP,
fi (Qs) = 0G/9P3
f, (Qs) = 8G/aPy

P, P; +P, Py

F
where G =% {C'(Q5 ) + tn AYQs )-VPf +P§;an'}
V1P +2Ke) P1+2Ke; Py

Finally, the guidance function is obtained as

- E 1 E 3Q5 ! I;Q%
1
Tanx PZ -P4Q5 + e 2 KQsz (8 )

A bi-quadratic form which becomes in terms of time by replacing Qs
by its solution
o
= + = - —
Q5 tt+r t K

Then
2
e Kt® - (2M051+P3)t + (e1 +P3) M0+ P,

Tan X =# KI\;[ (813.)
ethz - (ZM°€z+P4)t+ (€z+P4)_9_.+ P,
K

which is an expression containing two unknown constants which may

be used to'fit'' known solutions for guidance purposes.
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CONCLUSION

. + 5
The application of the Hamilton-Jacobi theory of Classical Mechanics

was useful in obtaining solutions to both the zero gravity and the flat earth-
constant gravity rocket flight problems. These solutions then led to a first
order approximate solution of the inverse square gravitational attraction pro-
blem.. However, the theory did not prove useful in obtaining a closed form
solution to the inverse square problem.

The development of a closed form solution by these methods depends
on the proper choice of coordinates to insure that the Hamilton-Jacobi equation
is seperable or solvable. Consequently, it appears that the usefulness of these
methods in high thrust applications will be limited until the development of
a transformation procedure which will transform the system from the well
known cartesian or polar coordinates to a system of coordinates for.which a

solution of the Hamilton-Jacobi equation is guaranteed.
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SUMMARY

/:75040

. This paper utilizes the similarity of thc minimum fuel trajectory
equations to those representing a rqstricted three-body problem to gain
a canonical formulation in the variables of Delaunay. A two step trans-
form procedure carried to the first order in small parameters is then
presented as an indication of a method that may be followed in higher
order studies. This progress report presents the analytical develop-

ment of the procedure as completed through December, 1964,

‘.\ é s
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INTRODUCTION

The minimum fuel equations of motion are synthesized from a
generlized Hamiltonian using Pontryagin's method. These equations are,
of course, identical to those presented in Reference 1 which are developed
through calculus of variations procedures. Examinaition of the multiplier
equations reveals that they may conceptually be considered as represent-
ing the motion of another (fictitious body relative to the vehicle. A trans-
formation of the coordinates then yields equations relative to‘a common center
with the vehicle position coordinates,

These equations are then 1n a form quite similar to equations represent-
ing a three body problem in cartesian coordinates. Hence, they are easily
transformed into perturbation equations in elliptic coordinates and thereby
into canonical equations in a set of variables representative of those used by
Delaunay in his lunar studies.

The disturbing functions of both sets of equations are not identical.
However, the disturbing function of one set may be separated into two parts,
one part of which is identical to the disturbing function of the other set. Two
basic transforms rhay then be performed which shift the periodic terms into
terms whose coefficients contgin higher orders of small paramete;rs. The
method used by Delaunay is not applied directly, Instead, a procedure, simi-
lar to that attributed by Poincare to Bohlin, which makes use of a determining

function to obtain the solution to the desired order is utilized.
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The comp'lexity of the problem and the magnitude of the task of
expanding the forcing functions and obtaining the transformed relations
precludes a blind approach to a higher order solution. Hence, a first '
order solution, as presented here, will be employed in an effort to gain
insight into the order of solution required to achieve the accuracy required

in space flight trajectory calculations,
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THE EQUATIONS

The two dimensional equations of motion of a constant thrust vehicle

in an inverse square gravitational field may be expressed in first order

form as
-
. M + T
= - x — cos
X4 3 X ™ X
T

X5 = = B‘j x; + — sinX
r m

X1 = X4

5{2 = Xs

m = - §

(1)

A generalized Hamiltonian function may be formulated from equations

L]

(1) as
T
H=Nxqgt\2 x5 - ll‘jlg (Ngxp+Xs 2 ) + o (Ag cos x + Ns
’ - M€ . where r2 = x¥f + x%
to obtain the optimum thrust direction requires that

2H
X

tan X

= 0 = - N sin X+ A cos X

N5/ N4

From which

A A
sin X = -;5-; cos X = =%

P
. where p = ()\ﬁ + )\é)l/z

Substituting these values for siny and cosyx, H becomes

f -—
. H=hx fhexs - 3 (ux thsx)t~ptha

sin )
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T T T/M
where - = = Q
m Mo—gt 1-—§— t
Mo
and x7 =1 - _§__ t = 14 at
M
o
T/Mo= f
T —
- = f/X7 M =M N7
m o

The equations which must be solved to obtain minimum fuel trajectories

become

>.<4=8H/3>\4=-E§X L M

r X7 P
Xs —aHla)\s =~E3 X2 +—f—()\s/P)

r X7
X1 = aH/a)‘l = X4
xz = OHyan, = x4
X7 aH/a)\ B §

(2)

Ag = - 3H/8x4 =~ N
7:5 = - Hyay, =- 1\,
. oH 3
o= - Tem =By - R Oy s xe)
. 3
Ay = - aH/E)xz = f:, \s -—Lfs{i haxa + N5 x2)
il f
N = - aH/ax_’ =_).{?P

Now, returning to the expressions for sinX and cos X, and referring to Figure
1, it may be seen that the thrust direction rﬁay be considered as the direction
to some fictitious body a distance p from the vehicle., A4 and \s may then be
considered as the coordinates parallel to x1 and x, of the fictitious body rela-
tive to the vehicle. To obtain equations analogous to three body equations, the
A equations must be transformed to equations relative to the same center of

attraction as the vehicle. This may be accomplished by introducing
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bg =x3 + Ny

Ys = xz2 + s (3)
Y7 =N

such that pis now

1
p = Elp-&'xl)z + (¥s - X2 )Z] /2

or upon defining

p becomes

1
2
p = [Az -2 (x1¢y +Xz¢5)+1‘a !
The equations of motion (2) are then transformed to the following second

order equations

+ = -
X1 X p (Yq-x1)
f

X

IH.

xz + = —— (Y5 - x2)

X7 P

:I;‘l = (Wg-x1) "&:?3'4 + }_E'E(LE{I¢4+X2¢5 -13
(q’S 'XZ)'EI%i + _%EQE{I‘P4+XZ¢5 -a

o
N

»
-4
°

IH,

$s =
Examining the right hand sides of these equations and defining

f A 3 +
R, =——p '&' K 53 - J;' (s + x2¢5 )E-'—kp—j—j’—xl 47%2 a
X7 A 2r T 2r

The equations of interest become

. b ¢ oR . oR
R s IR s +”‘—A5'§i = T2 9y,
9R; 3 (4)

These equations are then identical in form to equations representing a res-
tricted three body problem and may be transformed by any of several standard

methods available into canonical equations in the Delaunay variables,
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L = 8Fv/atv : £ = - 3F, /0L
v

v v
é = F . = - F
v o v/agv g, ) V/an
K = BFv/ak k = - 9Fv/9K
LT = aFT/MT IT = - BFT/BLT
GT = BFT/BgT gp = - BFT/aGT
where
2 .
R -
FV = ZLZ - QK+R1
2V
= +
F.. g*LﬁT— oK + R,

and the substitution x7 =k, ¢ 7 = K has been incorporated to account for
the mass equation. The subscript v applies to parameters which represent

the vehicle and the subécript T indicates parameters representing the thruster body,

2 2
Now, upon adding = -LZ to ¥ and - ‘}LZ to F_,, substituting the values
2L v 2L T
T .V
for Ry and R, and defining
1 A 3 3 2
= - pd— + + - +
F, “{A 527 -2 (xaPa +x2 §5 ) P (x1Pg +x; lbs)]
Fv and FT may be expressed
‘ 2 2
v f
I T A
v T
= - + F
FT Fv 2
and the equations may be expressed
= = - 9F L
L= 9F jot L, 8F,/aLy,
GV = aFv/agV gy = - BFV/E)GV
K = 8Fv/ak k = - 9Fy/3K (5)
Ly = - 0Fy app + 0F, [0 £ = + OF o1,p-0F2 /0Ly
GT = - 8Fv/8gT+an/8gT;gT = + SFV/BLT-an /8LT
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THE DISTURBING FUNCTION EXPANSIONS

To obtain solutions of equations (5) by applying a Delaunay procedure,
it is necessary to express Fv and F; as series expansions in the Delaunay
variables L, G, £ and g and/or the closely related elliptic parameters a
and e. Thesé types of expansions are readily available in any of several
texts on Celestial Mechanics. The actual functions Fv and F, of interest
here are not identical with those found in the texts, however, the individual
"parameters in the functions are similar and the expansion procedures are
the same. Therefore, only the results of the expansions taken to the first
order in the eccentricity e will be presen‘ted here.

The expanded form for Fv is then

2

2
=B, . B 4K-€ [85(L4+L'4)1/z
L v T

Fv 2L 2 T
v _l/Z

4 4
+ L +k-~
+ 065 L Ly (L2 + L™ (L +G )L +G ) [cosle tg k-t

T )

T 81
+ cos (lv+gv—k—1T—gT]

4 4 l/ )
} } + L + ‘ + +

T

+ cos (Ev+gv —Zk—ﬁT—g@

-1/;
2 L%+ * L,_+ -g 4+
+ ,637 eva LT( Y T) ( T GT) cos { g, IT gT)
_3/
L L*(L +G ity [L4-+7L4+L 3 tg -
+.08 ep L L2 (L +G )(L*+G*) 8L 2L Gplcos(t tg g )

4 4 471/ ;
- + 2 +.) + - I
.258 eTLT (L LT ) cos (k IT) cos (k IT)

. -
2 + tyL ) e -g +k+ + -g - +
+.194 eva LT(LT GT)(LV T) cos( gtk £T+gr) cos( g, -kHl, gT)

2 4 4 '3/21:' 4 4 3
+ eTLvLT (LV+GV)(LT+LV) . 194 Lv +.19 LT -.04 LT GT

- tg -k-
X |cos (1v+gv+k gT) + cos (JZv g, -k gT_)j]

-1/
4 4 4
. 85 eTL (LV +LT ) cos {

T T
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-.214L L (L ‘v L

+

4 -1/2
T ) (LV+GV)(LT+GT) cos (£v+gv—lT-gT)
1) 1/

52(L ‘+ L cos k

T

1
+.127(L.+L“)/2 cos 2k .
v T

+

+

where

2057 (L* + L_")12 cos 3k
v T

.063 (LV4+LT4)1-/’- “cos 4k }

€1 = f/p

Likewise, the expansion, to the first order in the eccentricities, of

Fz is

6 6 _3 27 =27 4 2
F, = -37{ [: +L ¢ - (L +G )P L TP L (LT+GT)]

=L 2 Tl 2 2 L4 ]
v 1z LT +32 Lv L (L tG ) (L +G )(3 L (Lv Gv)) cos Iv

- - — -2 4 2 5
+ep Lo E,v L+ 64Lv Lp* (L #G ) (L #+G,) (5L, GT;Jcos L

+
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3 =2 2 2 2
L+ + + 2g - -2
vy L LT ( G ) (L GT) cos (2¢ g ZZT gT)

3 -1y 2 2,2 -1
—_— + - + - -2
128 o 1y Hpl§FG L Gy EZ L, (LV+GV)—_I cos U +2g -2, -2gy)

9 -2 3 2 -4 -
32 ©r Lv LT (LV+GV) (LTfGT) cos (Zlv+2gv IT ZgT)

3 27 2 2 2 2y .
eTLv LT (LV+GV) (LT+GT) cos(Z.lv+2.gV 3£T ZgT)

9" ;-2 2 1 )2 2 o L
e, L "¢ Lyt (LIG )* (L +G.)? cos (3¢ +2g -2, ZgT)}




THE FIRST TRANSFORM

A previous section presented the canonical equations and the
expressions for the forcing functions in terms of the variables Lv’
Gv,lv, gv, K, k for the vehicle and LT,GT,IT, g for' t}'fe thruster., To

aid in the bookkeeping in the transformations and to achieve a slight

realignment of the equations, the following notation is introduced.

Lv = Ly 1= lo

. = L, = '
Gv 20 g, Lo
K = L3° k = 130
L =-Luo Ly = lao
GT =-L50 gT = 150

also, let Fv = F) such that

Fp = - F1+F,

The equations of interest, equations 5, then become

Lio = 8F:1 /04 Lip =-0F) /0Ly

L = F; /9 1 =-0F; /8L

20 9F; /0L, 20 1/9L, (52)

Ly = 8F) /8130 L30 =-0F) /8Ly

Ly = 9F) /My - Lyo = - OF) /8Lyg + 3F, /8L,
AF; [ 8l40

Lso = 8F) /0ts¢ - f50= - 8F1 [8Lsg + 8F, [0Lsg,
9F, fals ¢ -

The equations for the first transform are obtained by neglecting

the term F, in the above expressions. Ljo = 9F1 /04503 .ijo = - 3L, (6)
0
Then expressing

(j=1)~--5)
Fi = Fi9p + Fny
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where Fjpis the part of Fy that does not contain the small parameter

¢; and may be seen from the function expansions to be

2

o "
2L,0° 2L, ¢

Fyo = - aLljg (7)
The term Fi1 consists of all terms in F) which contain the small para-
meter €1 and may be expressed as

n

Fi11 = P + Z Qg3 cos Bp34 (8)
o i=1

where Po is the part of F1; that contains no periodic.terms and may be

seen to be

P, = - (.85) e (Lip* + Lgo*) 112
Qo3 represents the coefficients of the periodic terms and as may again
be seen from the expression for Fv in the expansion section, the Q_M
are functions of the small parameter €; and Ly, Lo, L4o and Lso only.

The cos @y are the periodic terms where the @p; are given by

G1 = prafio+ pzifzot p3also+ Paifaot Ps also (9)
or
5
Bos = Z piilio (9a)
=1 ) J

and n is the number of periodic terms to be considered.

The procedure now is to transform the Hamiltonian of this part of
the problem, F;, into a new Hamiltonian which is independent of the angle
variables such that

Fy (Lio, Lzo, Lisos Lo, Lsos L10, £205 L30,2405 450 ) (10)

= Fy* (Lu, Lzi,La,La, L)

where Lj1, Lz1, etc., represent the transformed variables.
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To aid in the transformation, a determining function
s:S(leyﬂjO) (j":l,Z;--~95)
may be used following the procedures of the Hamilton-Jacobi theory.

The equations of transformation are then

Ljo

3S/0230
(j:'l:Z)---95) (11)

i

21 9S/oLy,

and the terms of the Hamiltonian become

aS 2S
Fio (85/014y0, 5[; ’ 57;—0

a5 098S 8S 95
811 0' alz 0, 8140’ 815 07 4 0 2Z 0, 130p 140' 15 0 )

Fio

Fii1 = Fip (
The determining function may be expanded in powers of the small para-
meter €1, as

S = Sg+S; +S; + -~ -
where Sy does not containe;, S; is first order in€;, S; is second order etc.
To insure an identity transformation in case all Qu happen to be zero, Sy
must be

So = Lathio+t Lyafzo+ Latfso+ Lyrlaot Lisads o  (12)

or So= ZLji1flj0
j

The transformed Hamiltonian may also b¢ expanded in powers of the small
parameter €, as

Fi*=Fpo*+ Fi1*+F1z *+ --- (13)
where Fy * is of zero order in€;, F11% is of first order, etc. Substi-

tuting the relations for S and F) ¥, the Hamilton-Jacobi equation becomes
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upon substitution of equations 11, 12, and 13 in 10

- S, . @S, :j N 8S, . 95, .
FolLjp + (52 + 22 4 )|+ Fy Ly + (52 + 224,
ole (Mjo 510 ) 1 (L (azjo 510 )/

901]'—' Fro¥+ Fra*+ - - - (14)

(j =12 n-t-:5)
Fo and F1 may then be expanded in Taylor's series which to the first

order in €1 become

8F, a5,
Fo = Fo (Ly,) + = 220 Lisl S
0 o (L) ; 3Ljo! (8150 )
Ly
Fi = Fi (Lj1, 001) G=rianeess)
(1=1v21---:n)

Substituting these series into the Hamilton-Jacobi equation and equating

terms of like order in €¢; gilves
2 2

, oS B
L = ¥* = - - alL 15a
Fyo (Lj1) Fio 7L, 2 g2 - el ( )
F S
= 2——1—0' '-a—L + Pl + Z'Ql 1005901 = F]l*(le) (15b)
j aLjo L 8150 i
i
. 0F1¢
The notation denotes evaluated at Ljo = Ly, P and Qp
oL 0 Lj 81_10
1

denote .the functions Py and Qoi with the Lj; substituted for the L jo. Now,

since Fy; * is a function of the Lj; only and since S; and ? Q)4 cos By are

functions of the £3, F11%* can only be related to the term P . Hence,

- (.85)61 (qu4 + L414)l/z (16)

Fii*x(Lj) = Pi

and

0F) 0' 05
oL ot
3 BLyoly, | Bty

n

- Z Q14 cosBoy (17)
i

Returning to the expressim for F10, equation (7 ), and introducing the

notation
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: 2
U10=T_f—03 y Vs = ‘fﬁ = -I'_“F—I _ (18)

The required derivatives may be evaluated as

9F o 2
Lol =T 6P
Ly Ly 1
9F1 ¢ -0
3L,
L,y
8F1 of w =
9L3 o0 - T ool
Ls,
9F) ¢ 2 n‘
oL = “‘&‘j = o~ vy = -
0Ly, Lgo™t Ly 1 Lgt vl
9 ¢
815 015 . = 0
or.in general
0F) ¢
8L j B
jo le
The equation for S;, equation (17), then becomes
. 95, 95, 95, n
— 4 — ¢ —= = 19
vi1 EY™ a B30 v41 YIS 5 Q)4 cos 0p4 (19)
or
8S = l9a
i:)uJl /8L :/JQ“_cos B0 4 ( )
A solution for this equation may be taken in the form
S, = Z Ay sin 69y (20)
i

where the A;; are not functions of any f30. Hence,

95, 90¢
—_— = —284 A
;0 > 350 11 COs Qg4
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The particles of G required are obtained from the expression for @;,
equation (9), as

9001 _ 90801 _ 9803 _
Mo Pli 30 P3i g Mao Pas

or in general

0003 _
oLy, P

Substitution of the assumed solution into the equation then gives
Z Ay zj;Uijj 1 €0s Bg3 = Zi cos 6y
i i

Equating coefficients of like cosines yields

Q3
A; = g (1 =1,+...,n 21
1 Zj;_}lpji i 1 ) ( )
Hence
n Qi .
Sl = Z sin 601 (22)
151 jzvjlp'ji

With these values for Sp and S;, the determining function to the first

order in €; becomes

Q14
S = ZTLjidjo+t T =—*— sin 0 23
j jrkjo i ;Z;Ujlpji 01 ( )

The equations of transform then give

i)

Ljo =é£—j; = Ly +4:.:A11 pP3i cos Bg3
(j =1)°~-;5)(24)

A,
- = + z:__j._ 3
L5 9S/9Ly Lyo Z 3Ly, sin Ogy

312




The complete first order Hamiltonian function for this part of

the problem may now be written in the new variables as

2 2 l/
Fp* = 'E'L—uz —»?:%4-12 - alyy = .85¢; (Lp* + Lgt*)'? (28)
The corresponding equations of motion are then
Lyy = 8F1 %[5 5 Ljn = - dF1*@Ly; § =1,...,s (29)
The solutions of (29) may then be written
le = aj
(len--vS) (30)
2317 = f3t + b;

where aj, fj and by are constants.
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Substituting the values of £j0 from these equations into the expression

for 8y; equation ( 92 ), gives

5 n
‘ 9A, 3 \
0 = z ! - in 0
04 = Pii j1 =N 91 i1 sin Ogj

—

Upon defining
5
011 = Z pjilyn (25)

803 becomes

5 n
oA

00; =6 - 2 ; 2z
0i 114 i Pii W31 8Lj

sin B gk (26)
where the index of the second summation has been changed to avoid

~confusion. This expression may then be written

5 i—1 n
9A; « . 9A §x

Bo; =0 - 2 z sin + z sin O
0i 14 e Pii &1 8Ly, B x =it 0Ly Ok

5

9A) 4
- Z — in©
= Pj1 8Ly, sinBoj

which is in a form to which the Lagrange expansion theorem is applicable.
Applying this theorem and performing the necessary simplifications gives
the values for cos 08¢ and sin Qp; needed in the transform equations.
cos By = cos B3 + (terms of first and higher order in )
sin 893 = sin 6,3 t (terms of first and higher order in€r)
Then, since Aj; is itself a quantity of first order in €, the transformation

equations become

J T 152 3e.05 (27)

£n - Z E  sin where E = 8A /8L
N is 9, € i YU j1

Lj,= Ln + ?Alipji cos 8y,

30
These expressions are of course @ great deal more complicated when

higher order solutions are sought.
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DEVELOPMENT OF AN APPROXIMATE CANONICAL FORM

Substitution of the solution equations 30 or the transformation
equations 27 will not yield equations in a canonical form in ¥, , di-
rectly. Therefore, it is necessary to make further small order
approximations to obtain equations in a form suitable for further
application of the procedure. To illustrate this, and to provide a
somewhat simpl%fied outline of the developments performed in the
first transformation, consider the equations of motion 5a in the fol-

lowing form:

L = 9F, /¢ 1 = - 9F; /9L
po po po po
. oF F ¢

L= ot .30 = - dF1/3L__+8F, /0L
q g Zgo q qo0 qo

(31)
(p=1,2,3) (q=4,5)

Fr =F1 (L_ ¢ ,L 4 ) F, =F,(L

? ’ ? ’ IL ’
po po 90 qo po lpo qo Jtqo)

The technique followed so far has been to obtain solutions to the equa-

tions obtained by neglecting F, .

L oF; /ot = 2L (32)
jo T ! jo jo 8Lj°
(J = 1-—-5)

The solution to these equations were found by solving the Hamilton-

Jacobi equation
Filt, ,85/81, ) = Fy (L, (33)
jo jo L) |
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where S is the determining function

S:S(L ll. )
1. jo

The equations of transformation were then obtained from

L, =298S/oe, . £, =08S/aL, (34)
Jo Jo N n

which gave

L. = L, L, = L + ZA . COos @ |
jo _]O( ki k1) J1 g U pjl oi
| (35)
I = 9 L ! =1 -2ZE. i 0.
jo JO( ki kl) Al i ji sin i

Taking the total time derivatives of these equations and substituting

into the equations of motion 31

5 BL o * 8L »
> =21, 4+ R2 = 9F, /oL (36a)
oL r Y] 1 po .
r=1 T} r1
s | o ) o1 )
> | —=BZ 1, o+ RO = - 8F, /oL (36b)
oL 1 a1 rn po
r=y L r ri
s [oL oL, ]
s =22 L 4+ 992y = 9F, /80 - O8F, /ot (36¢)
oL r of r qo qo
r=, | 1 1 __J
s | o, or
» | =92 1L 4+ =92° = - 8F, /0L  + 8F, /oL  (36d)
oL ry of ri qo qo
r=) n r
(P = 1’29 3) (q = 4) 5) (r =1--- 5)
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Multiplying each of equations 36a by BIPO/BL and each of equations 36¢

k)
by quo/aL where L, is one particular L. and adding gives

ki ki r1
s [ 8L o s 0L of °
= s —B2 P2 _g9q0 492 .
3L oL Z 5 sL | et
r=) [ip=1 r) ky q=4 ry ki
T oL at s aL oy .
s —P° _pP° , » __9° _9°) ,
Y, oL, EY) oL r [ =
= r] ki q=4 r ky
s 9FL a5 [oF OF, o1
=z o a—P—L + = | a—‘l-L° - o a—‘LL" (37)
o o o
p=l p kl q q k]_ q kl

Multiplying each equation 36b by aLpo/aLk and each of equations 36d
; : 1

by ano/aLk and adding gives

1
5 ‘ , o AL . o0 oL | .
= > R _P°O, s _9° __ 99} +

i oL oL, oL oL T
r=) i = r1 ki q=4 ry ki '
[5 8L oL s o0 9L \
—Ppo __Ppo ., —4q° __99/f,
PINY] oL z o 9L n (38)
1 k1 1 ki :
p=1 q9=4
3 aFl BL 5 @ BL o 5 & 81_,
= > -aL —B° _ s L —H° 4+ = BL qo/dL
po oL _ qo 9L ki
P=1 k) q=4 ky q=4
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defining brackets as

— ; /oL Y] oL Y]
L !L = po PO - pe po
ko on Z\aL 9L oL oL
P=1 ka r1 r k1
s /9L ot 9L at
+ qo pe. qo __gqo
Z1 5L oL 3L oL
q=4 ki r) r k)
-~ 3 /9L a1 oL &
) - po po po po
ki 11 ZlaL., & ol 9L
P=1 1 1 r) ki
(39)
5 /3L ¢ oL a
o5 qo qo _ qo _g9go
oL Y] a1 aL
q=4 ky r) ri ki
3 /0L of 9L of o
k b Po Po _ po _.L
v Y, at a,
P=1 r r) 1
s /9L a1 oL BY,
+ qo 9o _ qo qo
= | o Y] ot a2
_ ky ri r1 ky
q=4

and subtracting equation 37 from 38 gives

5 3 3 (E)Fl aL o
L ,L ‘ L e

z [_kl g ] } z .a po 9L

r=qf - P=1 kl

OF 9F, oL oF, of o
+ 1 __E_o_ - oL 9, 92 (40)
ot oL qo 9oL of oL
po ki q 4 ki qe ki
5 of
oF, oL oF, o
+ i 2
z aL A.? + al afl
q=4 qo 8L qO kl

318




Multiplying each of equations 36a and 36c by of O/ack and 8¢ /ot
P

1 - qo Kk
respectively and adding gives
. {"“'; aL o s oL az , R
I > _LO _LO + > JQ L +| = __R_ _.&O
) oL of oL 81
r=1f Ip=1 r1 ki g=4 r] =1 k1 (41)
s oL 3 ], 3 OF, o s OF1 9 5 9F,
oz of 2 o1 g ! =z o o4 =4z ot alqo—z of 31qo
q=¢ I ki Topm PP am Y%k qmTqo
oL o oL o
Multiplying each of equations 36b and 36d by B—IL and 81_9_ respective-
k
1 1
ly and adding gives
s [[5 o oL 5 o L .. ; o oL
s {|ls P& _P°o, 5 _9d0 _ 9oy +l s —PO __P°
oL ol oL o4 r1 ot of
r=; (ip=1 ry ki q=4 r1 ki pP=1 r 1
~
of oL
5 .1 s -0F 6L s -0F, oL
+2—-5&—932L->: oL —B2+ » L —2
ot of r) po a’i{ qo
q=4 r1 1 jp:l 1 q=4 ki
s 8F, 0L
+ Z oL o al_qh (42)
q=4 d ki
subtracting equé.tiOn 41 from equation 42 then gives
A _ s [8Fy 9L aF oL
= [z ,L ;L +E ,IJ LY =-3[oL =B+, £
a
r= [ ki' i n ki’ n1 r% p=1 po lkl po 3llkl
s /8F; oL oF, ot 5 ’,""an aL oF, o1 \
o o 2o ot Yoo, |14
q=4 q ki 4 ki q=4 1 ki 1 ki

To evaluate the brackets it is necessary to transform the determining

function by means of the transform equations (35)
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S(L ’2. ) = S‘(L ,l. ) J = 1 - == 5 (44)
h o Jo n n

The partial derivatives of S' may then be expressed

aS! > 35 8l'o ES o
2. -+ D ow =2 o= 4 L, —1°
oL j= jo 9L j= j L
K ki 71 jo I ky j=r jo oL,
1 5 8_5_— 81 5 al
a%——s =z o = oz oL (45)
k1 j=1. J ky j=1 ki )
rewriting the brackets as —
L ,L = 22 4z A
( ki rJ oL po 9oL qgo 9L !
L - ki |p=1 ry q=4 T
a2 5 oL

ki {p=1 r] q=4
N 3 ot 5 ol o
- —po 4 L —4g°
— | Z Moo 3L z ko aL
oL Pl ki q=4 1
r)
r ] 3 ot ° 5 oL o
2N | = — = —B2 L —42
ki''r oL o o o of
(. ] ki | p=1 P ] q=4 d r}
9 3 of 5 ol o
PO -39
of o of o of
r1 [p=1 P ki q=4 q ki
and substituting the derivatives of S'

<

- ) 9S! 9

L,L]:———( -1>-————-z (46a)
k oL oL L oL k

Ll o ky 1) o r1 ki '
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¢

- T S
-~ 9 oS! 3 S
[fk,’fnj " G Laf BTN aev)
— ki k
- o | s | s [ os
L ooy | = 2 8 8 o5t
(__k, ;J oL, | az Y, {BL ’111 (46c)
ki r) 1 1

Then, since all I, and £,

; i are independent variables, equation 46a
1 1

equation 46b gives

)
e ,2 1= 0 . 47
a2 | o

and equation 46c¢ yields

\
0 !
L lz“‘7:+a£k1ﬁ+ r#k=6
‘kl’n{ YR 1 r=k rk
¢ L | o= - s
ki r_1j rk

Substitution of equations 47 into the equations 40 and 43 gives.

. 3 [9F oL o oF, o o
= - I .___R_ + _E
2rl z |9 po 9L 8lpo oL
P=1 ) r1
5 9F; 9L o 9F; ot s /O0F, oL o oF, ot
- 2 L —94° + + 2 L +
o qo oL alqo oL 0 qo oL alqo aL
q=4 r r] gq=4 r r
R o4
L 2f8F abge BF Tpol 5 fam aL o 9Fy Ygo
1 = o1 oL ot ZlaL ——&-—+8£ ot
_ oL ] pe T qo of qo 11
P=1 po q=4 ry
5 o0F, 9L 9F, o
+ z{aL 224 G 92 (48)
_ qo of qo o
q=4 T r)
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Now, the transformation of the previous section transformed

= Fp* (L ©
Fl(Ljo, tjo) 1% ( jl) (49)

.

This of course is a special case of the more general transform

Fy (L, ,¢.) = Fp*(L, ,2 ) (50)
Jo jo n k)t .

Derivatives of F) * may then be obtained as

i 3 oL oF o
oF * 5 1 OF, Jjo 1 jo
oL Z 15L. 8L a1, oL
ry j=1 _ Jo 1 jo r1
and — — (51)
§ 9F oL, 9F, o1,
ok ¥ _ ° {4 “Tjo, 1 “jo
at = 9L ot o1, ot
ra j:l Jo r Jo r)
oF *

where it is recognized that = 0 for the special case of equa-

oL,
J1
tion 49, but the form of equation 51 is used here to maintain sym-
metry.
Then combining the summations overp = 1 to 3 andq=4to 5

into a single summation over j = 1 to 5 in equation 48 and substitution

of equations 51, the following form is obtained.

s

. oF 5 an aL aFZ of
? = - 1 + o _3_0 + 9T —a° *
rn . oL Z{oL 9L qo 9L
r1 q=4 qo r] r1
, oF " s (OF AL 8F o \
L = + - 2 + 2 92
r1 af - 2\ dL o4 04 a (52)
I q=4 qo Ir) qo ri
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The same transformation must now be applied to F, . This yields

FZ (Ljo'l'

jo! T2 Fat Ly k) (=1, --e5) (53)

The necessary derivatives from equation 53 are then

' s /OF oL oF 0.
oF,' = 2 o, ¢ _J°
oL . oL, oL oL, oL
’ T J=1 )o r1 Jo r (54)
/ 9F
aF, ! _ 5 2 8]—'1'0, + oF, 82jo
ot Z oL, of ol of
r) J=1 jo ry Jjo )

Now, referring to the transform equations (35) and remembering

from the previous section that all A i and Eji are terms of order
1

€1 (O¢€1), it is seen that the derivatives of the old parameters in

terms of the new may be expressed as

o Zo
—d2 = Oe = + Oe
o1 ! i 8ir !
r) ry
. (55)
oL, oL, ;
8—]._,.1-0— = 6. + O, .8_1_{2 = Oe; where 6,:@ J#r
1y JTr r1 Jru J:l‘

Further, the function F, contains a multiplier p?‘ /Lm6 which
is always a small quantity of order less than €¢; even though
it is not a constant. Hence, by neglecting products of these

two small quantities equations (54) may be expressed

. 9F,' _ BF,
oL~ 5L
1 ro (r=1,---5) (56)
aF,' _ OF,
v ot of
Tl ro
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‘Then, substitution of the relations (55) into the equations (52) and again

neglecting products of the small quantities, the equations of motion may

be expressed

. aF, * 5 9F,
L z —_—— . T ==
r) ot of 6qr
ry q=4 qo
) r=1,---5 (57)
-0F, * 5 oF,
= + b ’
lrl aL'rl oL 6qr
q=4 qo

Then, substituting equations (56) and taking advantage of the properties of

the Kronecker delta, equations (57) may be éxpressed in expanded form.

Lu = 8Fp/om, ty = - 8F{/aLy

Ly = 8F%/dl,, 1,1 = - 8F%/8L;,

Ly = 0F%/dlx fq = - 9F1%/3Ly (58)
L:u = 3F1”</3/Z41-%%1 14.1 = - 3F*/aLy +gi:‘:
Loy = OFv#[3s1 -t ds1 = - OFy¥/dlsy + 5Tt

Equations (58) are the new equations of motion to be solved. Now note,
that F; * of equation 28 contains none of the fj terms. Hence, the first
1

three equations in the left hand column of equations (58) become:

Iy, =0 ; Ly =0 ; Ly =0 (59)

=
i
2
"
(9]
O
=
wn
-+
-
o~
I
[
[
1
2]
]
=
w
[ad
-
w
(=
"

a3 = const,

(60)
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Similarly, the second and third equations in the right hand column

of ‘equations (58) become

\ )

! =0 ; 43 = «a (61)
©o21

where « is a previously defined constant. Hence,

121 = C; = const., ; £31 = at+ C3 (62)

s

The first equation in the right hand column of equations (58) becomes
2

. 1.7L
o= 2 €1 ek (63)

4’ \’H(Lu /Ly )*

To continue further with this approach, it is necessary that equation

63 take the form
Ih = B (64)

where B is a constant. The appearance of L4 in the second term of

equation 63 thus produces considerable difficulty. Since L4 is related

to the Lagrange multipliers, it will in general be unknown. However,

it might be noted that if L1431 >> L;;, the second term will be much

smaller than the first and as such may be neglected. On the other hand,

1
when L4 << Lj, the second term will be of OE as compared with the

first term of Ol. Neglection of the second term under these conditions

is hardly justified and it will be necessary to assume some constant

value for Ly in equation 63,
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The procedure from this point on must then be considered.
iterative in an actual calculation. A good first choice for B will
probably be

B = w?/ar (65)
where a, is the constant of equation (60). The problem must then
bg solved and the resultant range of Ly and the corresponding range
of the neglected term in equation (63) examined. If this neglected
term does not remain small compared to Hz /af’ a new P must be
chosen

B = ul/al - e 1.7Lpy (_I:+(L4'1/Lu)ﬂ 1l (66)
where Ly is some averaged constant value from the range of Ly
previously calculated. The procedure must then be repeated until
the variation in L4 is negligible.

Returning now to the rémainder of the problem, with 1 ex-
pressed as equation 64, £;, becomes

o= P+ ey (67)

The relations for Ly1,Lz1, Ly, L, £21, £31 from equations 60, 62
and 67 may then be substituted into Fy* and F;' and a new function
defined as ‘

H'E—m ,Ls1,041, £51,(a1,3z2 ,a3,0,f,C1,C2 , C3),t{= (Fl*"Fz‘)

after
(68) substitution
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and the equations of the problem become

La

OH'/ 0441 La

- 8H'/9Ly
. . (69)
Ls; = 8H'/als, 251

- 8H'/8Lsg,

However, to apply the same procedure as ﬁsed in the first trans-

form, it is necessary to remove the explicit appearance of time

from the Hamiltonian of the problem. "To do this, it is necessary

to introduce accessory variables and define a new Hamiltonian as
H = H' - BLyg - ol (70)

The equations to be solved are then

Ly = 0H/di, ‘ g = - 9H/9Ly

Ls1 = 0H/ol, £51 = - 8H/9Ls,

. . (71)
Lbl = 6H/616 261 = - 8H/8L61

L;y = 9H/0t, f21 = - 9H/8Lq,
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THE SECOND TRANSFORM

The part of the forcing function that was neglected in the first

transform may be expressed in the form
2 n
= - L + Z L 72
Fy L}I:—lg To ( jo) re Ror ( jo) cos q}or (72)
=1
=1, - - -5)

where

Substitution of the first transform relations of equations (27) yields the

terms in F; in the following form.

T, (L.)Y+ ZU (L.. ) cos ©
J1 u 1) 1u

T (L.) =
o jo
R (L) =R (L ) +Z V (L, )cos@
or jo r N v v A} 1V
“6 -6 Ali
Lio = Ly (1-6Zp . cos 0 )
11i L 1
11
= co +lzz: E os (6 .-¢ )
cos¢0r _CS\plr Zjler jiE 11 ' r

- cos (91i+¢1rﬂ

Where T and R)  are identical expressions to T0 and R0 with the

L L L . .
o replaced by o and \pl . 8 identical to 4)01_ with the ljo replaced

byf, . U and V like A  are terms of first order in €.
) 1u 1V 11
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Rcearranging and reordering the cosine terms, F, may be expressed
as , §
= - fn—b T h=y Bxh (le) o8 ¢1g (73)
where ‘
5 :
Poh TE Al

Substituting the solutions of equations 60, 62, and 67, incorporating the

auxiliary variables and denoting F, ', Ty and B, after the substitution

as F, *, Ty *, By*, and pz/aI" 4s € , the expression becomes
, m e
Fo* =-¢, El"‘ (L1, Lsy,a1,a,)+ Z B k(I—“ﬂ:le;al,aZ)
k= !
74
cos ¢1k (74)
where
7
= Z 4 + c
%k . U "1, 7 Lk TP
=4

N
Performing the substitutions in F1  and adding the auxiliary terms,

the Hamiltonian for the problem becomes

2 2 .
H =2 ey -85 (af + Ly Y2 - pLg, - oLy,
! 41
m
s > b
+ €, El + ey Blk cos dplg {75)
The equations are given as equations (71) which may be expressed
L = 9H/de, £, =-08H/0L  (j=4,---,7) (76)
N ) J1 N

'The second transform now follows the same procedure as the first
transform. €, is the small parameter and H may be split into two parts,

HO void of ¢, , and H; all terms of which contain ¢, .
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’ 2 - 1/;
H = --£— . .85¢; (a1 + Lyt) - PLer - ol (77a)
-0 2L
4 .
2
where the terms oal " Qa3 have been neglected since they don't affect
. 1 *
the solution.
’ m
H = X +.k2 Y, K cOs ¢1k (77b)
=1

where
%

X, = €, T; " and Y = €2B

The object now is to transform the function H(Lj , 2. )} into a function of
1 N

the L., only
J2

H(L,L ,£. ) = H¥L, ) (j =4,---7 (78)
hon J2

As in the first transform, a determining function will again be used

in the form

S=5(L ,2. )
Jz N

which gives the transform relations

L. =29S/atL, . = 8S/aL, (j=4---17) (79)
: n n Jz J2

The parts of the Hamiltonian in equations (77) then appear in functional

form upon substitution of equations (79) as

. < |
H =H (85/80. ) Hy =H, (2 ,0.) (j=4---17 (80)
o o j1 anx h)

‘The determining function may then be expanded in powers of the small

.

parametere,.

s=so+sl+sz+--- (81)
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Where again, to insure the identity transformation when ¢, is zero,

So is taken in the form
~ 1
S = X L, ¢ (82)
o . Jz N
J =4

Expanding the new Hamiltonian H¥(L. ) in powers of the small
2

-

parameter ¢, and substituting equations (82) and (80) into (78), the

Hamilton-Jacobi equation becomes

s, . 3S i] ) 35, . S
L o+ (= + 22+ --){+H |L + (== +2+---), .
H, i PRIy M+ H i i, Tl T )
n N J1 n

ol = H*4+H*+H *=+ - -
1 k o 1 2

(83)

Ho and H, may then be expanded Taylor's series which to the first

order in t; become

7
H =

oH a5,
= L + o —
o T H by, ) * 2 5= (a/z. )
J=4 J1 n
L.
J2
= 4
H Hy (sz ’¢1 k) (84)
Substituting equations (84) into (83) and equating terms of like order in
€, yields
H (L. ) = H # (85a)
o )2 (o]
7
9H, 351 5
= — 4+ X L + Y L,
5 o 2 (L )+ B (L ) cos b
J~4a J1 J1
L.
J2
= % (L. ) (85b)
Hy (LJz

Lj replaced by L, .
1

Jz

where X; and Y are identical expressions to X; and Yl with
2
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The necessary derivatives are evaluated from equations (77) as

oH z -1
o . H 4 4 3
3L =t - LTar (a4 Ly2) Liz = - ng
41 L 42
jz
oH
oL = 0= -ns;
1L
(86)
8]—10}
81—461! = - B = = Dg2
L.
J2
oH
9L7 1! T oTeT m Mz
L.
J2

Using the notation of njZ as given in equation (86), the derivatives in

summation form may be expressed

7 7

O 351
z — —— = - = 7
~ 8L, a1, R 7Y (87)
J=4 n n J=a J1

Referring now to equation (85b), it is seen that the second term X; and

the right hand side, H; *, are both functions of the L., only while the

J2
other two terms are functions of both the Lj and the . . Therefore,
2 n
the Hj * is only related to X, .
Hy* (L, ) = X; (L, ) (88)
J2 J2
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Substitution of equations (87) and (88) in (85b) then yields
7 95;
_ T - T Y
- n. k (L. 0s 8
j=4 ja 05, kK ° ( jz Ve ¢lk (89)

A solution of equation (89) may be taken as

= = i
S - cz K (sz ) sin ¢l N (90)

Substitution of equation (90) into (89) then gives

7
C .. n. cos = 2y cos 91
fji qulk jz d)1k k 2k ¢1k (91)
from whence
Y
k

cC, 6 = —2
2 k 7 - (92)

Z kg,

Equations (81), (82), and (90) then give the first order deter-
mining function

7
> .

S = Z L. 1. + C S 3

Jjz N k 2k mlk (93)

Substitution of equation (93) into the transform relations (79) then gives

the transform equations

L. = L, + Z C . 0s
in iz 2k U 05
(J = 4' ""7) (94)
£, = ¢ + X D, sin
iz J K Ik ik
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where
D _ E)CZ k
jk oL,
J2
Substitution into the expression for ¢ K and performing Lagrange
1

expansions to the first order in € ; (as was done in the first transform),

the transform equations become

L. = L. + Xz C .. cos
BT M TR Sk ek
(j =4, ---7) (95)
L. =1, - D, sin
J j2 E ik ¢2 k
where
7
= = + 6
b T T gy ks (9ol
j=a 12

The complete first order Hamiltonian in the new variables may

then be obtained from equations (77a), (85a) and (88) as

z 1/2
H* (L, ) =- &=, - .85¢;(af+L *) -BLg, -alqg,+ep T (L, )
j2 2L 4z iz
42
(97)
where the expression X; = € T, has been incorporated.

The new equations of motion to be solved are

9H*
. = g, = -09H*/oL, (j = 4---,T) (98)
j2 sz Jz Jj2

.

These equations have solutions of the form

L, = a, (j=4,---7)
Jz ) (99)

b.t+ cj (j=4,---7)

2.
J2 J

1l
1l
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Where aj and Cj are constants as well as the b, which are functions
of the aj and previously defined constants. T, is obtained from the ex-

pansion of F; in a previous section by incorporating the results of the

first transform and then replacing Ly and Ls; by Ly, and Lg,

Tz =

oo |-

-2 3 -2 2
~ Ly, + a® Ly, vy (a1 +a, )2 ay L4z (Laz +Ls 2 )2 (100)

The expressions for bj may then be obtained from equations (97), (98)
and (100) as:

by = -‘E‘; + L.7eiad - €y (Za.i (1-a°ay)
as  (af+a})¥? L
3
. (1 + 22
32

. (101)
b5 + 32 € Adq (1 +_) (a4+a5)
b = B
b7 = o
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THE SOLUTION FORM

The preceeding sections have explained the transformations
necessary to integrate the differential equations (5) or {5a). To be
useful, it is necessary to express the original variables (Ljo,ﬂjo) in
terms of the constants of integration.

The two transform relations were obtained as equations (27)

and (95) and are repeated here for compactness of the following

discussion.

L =L +Z A (L )p. cos ¢,
jo 1 1ol g1 )i 1i
(j=1,---5) (27)
g, =12 - ZE (L ) sin ¢ ,
jo j1 i ji J 1i
and .
L =L +2C L
J j2 k 2 k ( jz ) qjk cos ¢Z k
b . (j =4,---7) (95)
1. =4 - D. (L. ) sin ¢
N J2 k  jk 2 2 k

Also, in the process of determining a canonical form for the second

transform, the following relations were generated

L = a (j=1,---3) (102)
N J ‘

fll=f5t+ (ST lzl:Cz ) = at + C3 (103)
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Now, denoting aj = Lj (j =1, ---,3) to aid in notation, the
2

equations
L. =1L (j=1, ---3) 104
) i J (104)
may be considered as part of the second transform equations.

Next, each A ; (Lj ) may be expanded in a Taylors series
1 1

about the point Lj = L. to the first order
1

J2
5 3A
A i(L. ) = A i(L‘ )+ = 1i (L, -L, )+ --- (105)
1 n 21 ] =1 9L g )2
N L
J2
The terms (Lj -Lj ) are determined from equations (104) and (95) as
1 2
(L, -L. ) =0 (j=1,---,3)
J1 J2
(106)
(L, -L. ) = ZC ., COS j=4,5
v Ja2 K 2 kjk q’zk (3 )
Hence
A =A (L )+5228Azic os ¢ (107)
= . coOs
1 2i ] quJk 2 k

2 j=4 kAL
J2

where A is an identical expression to A with the L., replaced by Lj
2i 1i n 2

Equations (107) and the first of (95) may then be substituted into the
first of equations (27) to yield

2
L. =1L +2 C .. §.cos + <A .. cos 0
jo iz k 2 quk J ¢z k i zipJ1 1i
/5 .
+ Zd{ = 8A21 C

i (}?:4 k aLh

cos ¢ p.. cos 6
2

2 khk k “ji 1i

2
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Now, noting that Azi is of order ¢} and C

2 k

is of order €, and

neglecting terms of order €€, , this becomes

«

L' :L_ + 2 C .
jo 2k 2 K%k 5

5 - (0 j=1,2,3
iy )1 3 =4,5
AR

6 cos ¢ +ZA p.cos 0
zk . .

21 1i

Next, from equations (99) and (101) it is seen that £4; = £61 and

27 2 =f271. Also, in the formulation of the canonical form it was

specified that
fer =Pttcy =4
and
£71 =att+ c3 =43
and in addition, qbk = ql K and q_’ K =

specified that

4, =14,
21 = {;;
ia =13

Q3k-

Consequently, it may be

(108)

(108)

are transform relations replacing the f¢1 and £7 relations of qquations

(95). With this notation, ¢ 1 becomes
2

¢k

2

._..
nMw

L Yk,
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5 5
0 = Z Ji -z .. 2 D, sin
1i . Pi j2 ~ le jk ¢zk
J=1 J=
Defining
5
6. = Z p. .14
21i =t Ji )2
5
= - ZD i 11
911 621 . kpj smq)Zk (110)
j=a k
and
1 5
cosei = ¢cos B +— 2 X
1

D p.. |co -0 )- +0
2i 2 j=q K Ky E > (¢zk z-i) COS(¢zk zi‘z]

+ (terms of higher order ine, )

{111)
Substitution of equation (111) in equation (108) then gives
L =L + ZA ..cosB® + Z C ., 8, cos
jo j2 17,1 Py 2i 0k 2k Yk j ¢zk
1’ 5
+ —2Z X ZA D - - +
z 7 2iPji~ hkPhi E:’S @, 178, i) - cos(®, o )
h=4 k
or again neglecting terms of order ¢, ¢, ,
L, =L +2ZA p cos® +ZTC q._ 6 cos (112)
jo © j2 i zlp_]l 2i k 2kq_)k_] (gk

Now returning to equation (27), the Eji (Lj ) may be expanded in
, 1

Taylor's series in the same manner as the A ,

-

11
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5
oE ..
E. (le) =Eji(L. Y+ =T =)L C _q,, cos o (113)

Substituting equation (113) along wi th equations (108) and the second

of equations (95) into the second of equations (27) then yields

g, =2 -Z D.§sind -ZE (L )sin 6
jo j2 K jk j 2k i Jji 2 11
5 9F (L. ) '
-z z = L C . q,. cos ¢ _ sin® (114)
L .
{ h=s k 9 iz 2 k'hk 2 k 1i

From equation {110) neglecting terms of order eg and higher,

sin ( +6 )
° ¢2k .

Mo

sin © = sin©® -—
1i 2i 2

+ sin (¢Z K GZI)J

Substitution of equation (115) into (114) and neglecting terms of order

Z D
K 21

L P..
k'ji
i=a JK)

(115)

€1¢, and higher gives
g =14, -ZD_ 6 sind -ZE (L, )sin® (116)
jo jz o ik 2k 1 i g2 2i

Replacing the Lj and { terms in equations (112) and (116) by their
2

J2

constant values then gives the relations between the original variables,

the constants of integration and time.

=a +2ZA tc )+ Z b, t+
Ljo a.j : Zi(a.h)pji cos 92 '1(bht gh) 2 C2 k(ah)qjk6j cos ¢zk( h ch)
= + - S E 51 + - D i b t+
ejo (bjt cj) ¥ ji(ah) sin Gzi(bht ch) z jk(ah)sj sin ¢2k( h ch)
(117)
lv"‘"xs) (h:l;"";s)

1t

(
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where

and

by and bs are given in equation (101) and the constants a;,

Cl,y.eee

(o]
[

1
— O
Cme
] Il
=

w

by = B; bz =0; by =«

rs

,Cs are the constants of integration obtained previously.

.,ag5 ,
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CONCLUSIONS

The analytical procedure for obtaining a first order approximate
solution to equations evolving from equations representing 2 general
minimum fuel low thrust problem has been presented. The actual
cvaluation of the constants of integration depends of course on the
nature of each particular problem.

It may be expected that this procedure, especially in the first
order format presented here, will be more applicable to situations in
which the vehicle makes many orbits around a central body to attain
orbital transfer or to rendezvous with or intercept another orbital
vehicle. Calculations of interplanetary transfer with this procedure
will probably require higher order approximations.

The determination of higher order approximations with this pro-
cedure is straight forward through the first transform. This requires
the simple (though tedious) expansion of the Fi disturbing function to
higher powers of the eccentricity; the inclusion of higher order terms
in the expanslions of the determining function, F)* and all Taylor's
series; and the performance of the extra steps required to determine
the higher order terms of the determining function. The extensions
required in obtaining a canonical form for the second transform are

not obvious. However, it might be noted that the need for the higher
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order solution will most likely result when the conical eccentricities
are expected to be large. A look at the term €, which multiplies the
entire F, term indicates that it is a function of the inverse cube of
the semi-major axis. Hence, as the eccentricity increases ¢, de-
creases at a much faster rate and the neglection of the entire F; term
may be feasible.

The next step in the development of this procedure will be the
attainment of numerical results for a physical problem. The weakest
point of the method so far (other than the order limitation)appears to be
the iteration procedure that is‘ required to obt'ain a good value for the

f term in obtaining the canonical formulation for the second transform.
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SUMMARY /
3306¢

The generalized Newton-Raphson method is used to
determine optimum, coplanar, circle-to-circle, transfer
trajectories for low thrust space vehicles operating in
a strong central force field, such as a near earth orbit.
Optimum thrust steering programs are computed for progres-
sively increasing values of final time up to durations
involving 26 revolutions about the earth. A description i
of the numerical results and a comparison of these with i
the results of a previous linear analysis are given. '
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INTRODUCTION

This paper is concerned with the computation of opti-
mum, orbital transfer trajectories for space vehicles with
low thrust, electrical propulsion systems operating in a
strong central force field, such as near-earth orbits. Al-
though the magnitude of thrust acceleration for interplane-
tary and geocentric low thrust missions can be similar, the
optimum trajectories for the two missions are quite differ-
ent. This is due to the predominant gravitational attrac-
tion of the earth, which at an altitude of 200 miles is more
than 1500 times greater than the gravitational attraction of
the sun at a distance of one astronomical unit. Thus, many
orbital circuits are required for a low thrust vehicle to
complete various geocentric missions.

Many of the problems associated with optimization of
geocentric low thrust trajectories stem from the large
number of revolutions about the earth required of the vehi-
cle. One of these problems is the sizable accumulation of
round-off and truncation error resulting from the many inte-
gration intervals. A second difficulty, associated with
some of the successive approximation techniques, is the need
to store the control variables as functions of time. If the
functions are rapidly changing ones, the amount of computer
storage required may become prohibitive. A third difficulty,
usually associated with the classical indirect methods for
solving the boundary value problem, is the extreme sensi-
tivity of terminal conditions to initial conditions of the
multipliers. As the number of revolutions for an optimum
trajectory increases, the sensitivity may be intensified to
a point where systematic computer procedures will not con-
verge to the desired solution.

Several successive approximation techniques, each em-
ploying a variation-of-parameters integration procedure,
have been developed (Refs. 1 and 2) and programmed for
IBM 7090 computation. ‘Although these methods have proven
partially successful, satisfactory convergence to solutions
of the multiple pass problem have not been achieved. As an
alternate approach to this problem, the generalized Newton-
Raphson method (Refs. 3 and 4) has been used with consider-
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able success. The algorithm for this method solves a se-
quence of linear boundary value problems such that the
sequence of solutions converges to the solution of the non-
linear problem. Because the linear boundary value problem
is easily handled numerically, the algorithm is readily
adaptable to high speed, digital computation. Another ad-
vantage is that the initial approximations do not have to
satisfy the differential equations or the boundary condi-
tions. Thus, simple starting functions, such as straight
lines or unperturbed two-body orbits, are usually adequate
for convergence to the desired solution.

The specific problem treated in this paper is that of
determining the optimum thrust steering program that will
minimize the time to transfer between coplanar, circular
orbits. Since the thrust magnitude is fixed, minimum time
is equivalent to minimum fuel.
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SYSTEM MODEL

For the system model, only coplanar motion in a geocen-
tric inverse-square gravity field is considered. The vehi-
cle is taken as a mass particle with a thrust vector con-
stant in magnitude and variable in direction. The problem
is to determine the optimum thrust steering program for
minimum time transfer from a circular orbit at an altitude
of 200 statute miles to a higher energy circular orbit.
Because the vehicle's mass decreases linearly with time,

minimizing time is equivalent to minimizing fuel.

The equations of motion in polar coordinates are

o = xg _ k 4+ I sin 6
r 2 m_ + ot ’
r o

g uv T cos 6
v = - + o

r m_ -+ mt.

o

r=u,
0 o= ¥
=7

Here, k 1is the gravitational parameter of the earth; T
is the thrust; 6 1is the thrust steering angle; m is the
initial mass; and m 1is the time rate of change of the

vehicle's mass. The state variables are defined in Fig. 1.
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Earth

/

Fig. 1 Coordinate System

Inertial Reference

The basic numerical data used for most of the computations
are

k = 1.408 x 10%° £t3/sec? |
r_ = 2.19825 x 107 £t

g = 32.2 ft/sec2 s

T =10 1b ,

W_ = 10,000 1b ,

I = 5000 sec ,

m_ = Wo/g = 310.559 slug ,

o
m = -T/Isg = -6,21118 x lO-5 slug/sec ,
=0
o
3
v, = (k/r))

where g is the gravitational acceleration at the surface
of the earth, W, is the vehicle's initial weight, and Ig

is the specific impulse
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VARIATTONAL TREATMENT

The results of this paper were obtained by the indirect
method of the calculus of variations in conjunction with' the
generalized Newton-Raphson algorithm (Ref. 4). The exis-
tence of a solution to the nonlinear optimal control problem
is assumed and the necessary conditions are obtained by the
application of the Pontryagin maximum principle (Ref. 5).
For the problem treated herein, the necessary conditions may
also be obtained by classical procedures (Refs. 6 and 7).
These necessary conditions form a nonlinear, two-point,
boundary value problem. For the problem of this paper, the
relevant boundary value problem is given by the following

sixth order system:

T =u = f(l) s
CoovE ik, AON @
u = + T =f s
r 2 2 2§
r <7\ +7\>
u v
a(t)A
\.7 =-E¥+ 1 =f(3) 9
t 2 . .22
(% + A
u v
. 2 .
v- _ 2k . v _ &)
7\r 2 3 Au 2 7\v = £ ’
r r r
;\ = - A +¥?\ =f(5) s
u r r v
;\ ='2_\,'?\ +H?\ =f(6) »
v r u r Vv
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where

a(t) = ——o

m_ + mt ’
o)

and the boundary conditions are

at t_ = 0 at t = tg (tf unspecified)
r(0) = rO ) r(tf) = rf )

u(0) = u, s u(tf) =uc

v(0) = vy V(tf) = v

This may be written as

where
x=(x®, ., x®y,
F = (f(l), Sy f(6)> ,
and
D =rey , xPw=-uw , xPDwe-=ve) ,

D) =@ , PDwe=-rm , Do =

The generalized Newton-Raphson algorithm proceeds by
solving the following sequence of linear, two-point, bound-

ary value problems:

Xn+l

n=0,1, 2, ...,

= 3, DX, - x ®] +FE, B,
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where J(X, t) 1is the Jacobian matrix of partial deriva-

(1)

The boundary conditions for every n are those given above.

. i . .
tives of the f( ) with respect to the x , 1, j=1,...,6.
A starting vector, Xo(t), and an estimated final time,

tg , are assumed and the sedquence of linear boundary value
o

problems is solved numerically by the method described in
detail in Ref. 4.

The basic starting vector Xo(t) is of the following

simple form:

D) = (0 = + ftf o ¢,
o

D (6) =u (&) =0,

x§3)(t) = vo(t) _ [rO%t) 5 ,

D@ = =1,

o
(c, for t e (O, % te > }

SACERNO

c, for t € (% te s te >

e, for t e (0, 3 tg > |

it

8 ©) = 2, (©

c, for te (% te s tfo>
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Most of the results described in this report were ob-
tained by first producing a solution using the above simple
starting vector, Xo(t). Then a parametric study was per-

formed by varying the relevant parameters (T, m, r etc.)

f’
and employing the solution for the previous set of parame- ‘

ters as the starting vector for the succeeding set.

For transfers that required more than approximately

two-thirds of a revolution, the constants cy1s C and

2’ €3’
<, above, were chosen to correspond to constant circumfer-
ential thrust. For shorter term transfers, these constants
were chosen to correspond to an initial thrust program that
is outward along the local vertical for the first half of
the transit time, and inward along the local vertical for
the remaining half. For a few transfers, which required
many revolutions, the solution to the nonlinear state equa-
tions corresponding to constant circumferential thrust was
used for the starting vector, Xo(t). For the many revolu-
tion transfers, this choice of starting function appears

more efficient than the simplified starting functions given

above, even though it does not meet the boundary conditions.

For purposes of obtaining transfers that have certain
particular properties it was found convenient to treat the
original time optimal problem as a fixed time, maximum
radius problem, This introduces a boundary condition of a
more general class than previously handled within the frame-
work of the generalized Newton-Raphson algorithm. The
boundary condition appears as a nonlinear functional rela-
tion between the final value of the local horizontal ve-

locity, v(tf), and the final radial distance, r(tf), viz:
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2 2
o) (r(tf), v(tf)> = v (tf) - k[r(tf)} =0

The procedure used for these cases was as follows: An
approximate value for v(tf) was changed automatically at
each step of the iteration, on Xn, by means of the recur-

sion formula

1

) -172), _ T (g
Va1 (Ep) = ?[krn(tf) } t:’ ENCE

This formula results from the Newton-Raphson sequence for

the scalar valued mapping &, with an initial estimate

[ ]

To(t)s Vot |- As n> e, X (£) - X (b, r (tg) - e

vn(tf)-e v*, where X*(t) is*the*solution of the nonlinear
differential equations and (r , v ) 1is the solution of the
boundary relation & = 0. This procedure was entirely sys-
tematic and exhibited good convergence properties over the

range of problems studied herein.

COMPUTATIONAL RESULTS

Computer programs utilizing the generalized Newton-
Raphson method have been developed to optimize circle-to-
circle transfers both for minimum time problems with speci-
fied values of final radius and for maximum radius problems
with specified values of final time. The minimum time pro-
gram was used to generate solutions for progressively in-

creasing values of final radius up to durations involving
21.3 revolutions about the earth. The basic numerical data,
given on the preceding pages, were used for this series of
computations.
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For values of final time up to a few orbital periods,
the results are quite similar to those obtained from a pre-
vious near-circular linear analysis (Ref. 8). Figure 2
shows the optimum thrust steering programs for very short
durations, up to one orbital period. Although the solutions
shown are taken from the linear analysis of Ref. 8, the dif-
ferences between these and the latest nonlinear results are
at most 2° for the one revolution case. The time scale for
each solution has been normalized so that a comparison may
be made on a common scale for which the normalized time
varies from zero to one. It is noted that the time varia-
tion of the thrust steering angle, 6, 1is antisymmetrical
with respect to the midpoint. For the very short durations,
1/6- to 1/2-revolution, the 6 motion has a mean of
6 = 180° (opposite in direction to circumferential thrust),
whereas the corresponding motion for durations of 2/3-revo-
lution and longer takes place about a mean of 6 = 0 (cir-
cumferential thrust). Also shown in Fig. 2 is the thrust
steering angle for one revolution. For this case 6 1is

very nearly circumferential,

In Fig. 3 the 6 scale is considerably enlarged and a
comparison is made between the linear and nonlinear solu-
tions for the 2i-revolution example. The difference is
still very small, about #3°. However, it is noted that the
duration of the last period of the nonlinear solution is
slightly longer than that of the linear solution, whereas,
the first periods of the two 6 time histories are almost
identical in length. This characteristic is more apparent

for the longer duration transfers, and is due to the thrust
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FIG. 2 NORMALIZED OPTIMUM THRUST

STEERING ANGLE FOR TRANSFER

"TIMES UP TO ONE ORBITAL . PERIOD
— LINEAR ANALYSIS —

2701
N = 172 REV.

N= 1/6 REV.

180

.8 - DEGREES

90r K

NORMALIZED TIME-t/t; LO

0 —/
| N= IREV.

N=5/6 REV.

-90* N = 2/3 REV.
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steering angle 6 always being in phase with the vehicle's
orbital angle, ¢ (see Fig. 1), i.e., as the altitude in-
creases the orbital period, and therefore the period of 6

motion, also increases.

Figure 4 is also taken from the linear analysis of
Ref. 8 because the differences are still relatively small.
For N = 1%, 2%, and 3%, the amplitude of motion is de-
creasing and approaching a circumferential thrust program.
Also, for N =1, 2, and 3, the thrust program of the
linear analysis is exactly circumferential, and only nearly
circumferential for the nonlinear results of this report. A
search was made for a 6(t) = 0 program for a series of
solutions from 133 to 143 revolutions. It is clear from
the results of this search that an exactly circumferential
thrust program does not exist, the closest being a minimum
amplitude of 3.2°. It has been proven independently by
H. J. Kelley and R. McGill that 6(t) = 0 does not satisfy
the Euler-Lagrange equations, except in the limiting case

when the thrust acceleration, T/m, vanishes.

A typical optimum thrust steering program for 19 revo-
lutions is shown in Fig. 5. As previously mentioned, the 6
motion throughout the flight is in phase with the orbital of
motion. Also characteristic is the relatively large ©
motion at the beginning of the transfer that diminishes to a
34° to 41° amplitude near the end of the maneuver. A
check of the time history of eccentricity reveals that the
maximum values of eccentricity build up from .0045 to
.0095, and that the minimum values are very small (less

than .0004) but never exactly zero except at the two termi-
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nals of the transfer. Using the generalized Newton-Raphson
method, this particular solution required computation of 24
trajectories, 5 iteration cycles, 425 constant integration
intervals per trajectory, an average of 22 intervals per

orbit (17 intervals for the first orbit), and a total of 49

seconds of IBM 7094 computer time.

The solutions obtained are, of course, locally optimum,
and no attempt has been made to search for a different class
of optimum trajectories that may yield better performance.
Should such a class of solutions exist, they would most
likely be revealed for the significantly longer duration

maneuvers.,

Because the equations of motion of the linear analysis
contain only the single parameter T/moai, it is possible
to plot a "miles-per-gallon" nondimensional parameter,
Ara%/Zwa(T/mo), as a function of the number of revolu-
tions, Nf, required to complete the transfer. This gen-
eral type of plot, taken from Ref. 8, is presented in Fig. 6.
Given the thrust/mass ratio of the vehicle and the freguency
of the original orbit, the increase in radius of the circu-
lar orbit may easily be computed as a function of the number

of revolutions.

Similar pgrformance results, obtained with the gener-
alized Newton-Raphson method, are shown in Fig. 7 and do not
significantly differ from the linear results. The improved
performance is due to the more realistic mathematical model
of the nonlinear analysis that takes into account the de-
crease in gravitational attraction and reduction in vehicle

mass as the duration of the maneuver increases.
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All of the previously discussed numerical results apply
to a vehicle with T/WO = ,001 g's and IS = 5000 seconds.
A brief vehicle parameter variation was carried out and is
summarized in the following table for a fixed value of final
time equal to 40.29 hours. The final time of 40.29 hours
was selected because it corresponds to a transfer of 20

revolutions using the basic numerical data.

T/W I AR N

o] s £
(g's) (sec) (miles) (rev)
.0025 5000 10,658. 13.064
.001 5000 2,134, 20.046
.0005 5000 893.6 23.123
.00025 5000 413.9 24,792
.0001 5000 158.2 25.852
.001 1000 2,323. 19.824

Although there was no difficulty in computing an opti-
mum transfer consisting of 21.3 revolutions, it was not pos-
sible to ‘achieve convergence to an accuracy of four signifi-
cant figures for a transfer involving 21.5 revolutions.

This appears to be the limit for the generalized Newton-
Raphson method employing ordinary polar coordinates and a
simple second order, modified Adams, predictor-correétor,
numerical integration procedure. The difficulty appears to
be associated with the size and number of integration in-
tervals rather than the number of revolutions, because there
was no difficulty in computing a 26-revolution transfer with
a thrust acceleration of .0001 g's.
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ROXIMATE ANALYTTICAL SOLUTIO

In Ref. 8, optimum, low thrust transfers between neigh-
boring circular orbits were determined for vehicles with
constant thrust acceleration. It was shown that if the
deviations from an original circular orbit are small, the
equations may be linearized, and the resulting optimal solu-
tions are globally minimizing. Furthermore, whenever the
duration of powered flight is some integral multiple of the
orbital period, the optimum thrust direction is circumferen-
tial, and the vehicle passes through a higher energy circu-

lar orbit condition at the end of each revolution.

The numerical results of the linear analysis (Ref. 8)

show that for integral number of revolutions

2
Y£% _
Tf(T/mo) = 2 2 (l)

where g = Ar = - x is the gain in altitude, ®, is
the initial orbital frequency, Te = Ot is the nondimen-
sional value of final time, and T/mo is the constant
thrust acceleration. For constant orbital frequency, the

number of revolutions, N is by definition

f’
w t
N, = ‘Z’Wf . (2)

Equation (1) may be rewritten as

2
Arwb 3)
— =2, 3
ZWNf(T/mO)
which is the altitude gain parameter plotted in Figs. 6 and

7.
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Equation (3) may also be derived from simple energy
concepts, assumiﬁg that the thrust program is circumferen-
tial. The final energy of the vehicle is expressed as the
sum of the initial energy plus the work done by the rocket

(work is thrust multiplied by the distance traveled, 2erNf)

.2 Mk 5 mk
2 movf - ;—f—— = 3 mOVO - ;‘;_ + ZTTrOTNf . (4)

Because the initial and final orbits are circular (V% = k/rf
and Vi = k/ro), Eq. (4) reduces to
2
4WTNfrorf

e " 15 ° m K . (5)

AY

Also, for neighboring circular orbits,

r3 r T
1l __o £
2k T k
w
O

which reduces Eq. (5) to (3).

As a measure of performance, the following two equa-
tions, obtained from Eqs. (2) and (3), indicate the number
of revolutions and time it takes for a given vehicle to

transfer between circular orbits with specified radii:

2
wo(rf ro)

Y T Tar(t/my ©
_ ab(rf - ro)
tf - 2(T/mo) . (7)
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Comparison of the numerical results, based on the non-
linear mathematical model, with those obtained from Eqs. (6)
and (7), shows that there is good agreement for transfers
involving one or two revolutions. Thereafter, the differ-
ence between linear and nonlinear results progressively in-
creases (see Fig. 7). For the 19-revolution example, the
errors in the above linear equations are 77 per cent for Nf

and 36 per cent for t This is due to the assumption in

f.
the linear analysis that the gravitational attraction and

mass of the vehicle are constant.

1f, however, W and m in Eqs. (6) and (7) are con-
tinuously rectified, the new expressions should be in closer
agreement with the nonlinear results. In the following

derivation, N and t are considered as functions of «r:

wz(r -r) w2
N = — 2 aN___o _ for r =r¢r
47 (T/m ) ’  dr 4W(T/mb) T o’
w (r ~-1r) w
o o dac _ 0 _
t 2(T/mo) ? dr 2(T/mb) for r=r7, .

. . 2
For r substantially greater than T, the quantity W,

is replaced by wz = k/r3;

T¢ Le
3
_ dN _ (k/x>)
Ne = ar 9 = 4W(T/mo) dr (8)
r r
O O



rf rf 1
(k/x3)
_ dat _ AP
te = ar dr = 2(T/mo) dr , (9
r
O (o]

and integration carried out with respect to r,

- wam| 2 0o
0
T PETC B
te = (T/m ) <ro) <rf> . (11)

For the 19-revolution example, the errors with respect to
the computed nonlinear results are reduced to 1.06 per cent

for Nf and 1.23 per cent for ¢t

f'

Because mass in the integrals of Eqs. (8) and (9) is
treated as a constant, a further improvement is possible by
utilizing Eq. (11) and expressing mass as a function of r:
m

cm bt =m 1 4+ B
m m0 + mt = moll + T

} : (12)

)

If this expression is substituted in Eqs. (8) and (9) and

integration is carried out again, then
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-

te = | () (=) “2%:({?1?} ] {f;} >] - (8

For the l9-revolution example, the errors are further re-
duced to 0.20 per cent for Ne and 0.15 per cent for te.
Because Eq. (14) is an improved expression for t as a
function r, it is possible to repeat integration, again
and again if necessary, in an attempt to reduce further the
errors. This has not been carried out as the accuracy of

the nonlinear results is not better than four significant

figures.,

371



372

“ REFERENCES

Kelley, H.J., Hinz, H.K., Pinkham, G., and Moyer, H.G.,
"Low Thrust Trajectory Optimization," Progress Report
No. 1 On Studies in the Fields of Space Flight and Guid-
ance Theory, NASA-MSFC Report MTP-AERO-61-91, December
18, 1961,

Pinkham, G., "An Application of a Successive Approxima-
tion Scheme to Optimizing Very Low Thrust Trajectories,"

Progress Report No, 3 On Studies in the Fields of Space

Flight and Guidance Theory, NASA-MSFC Report MTP-AERO-
63-12, February 6, 1963.

McGill, R., and Kenneth, P., "A Convergence Theorem on
the Iterative Solution of Nonlinear Two-Point Boundary
Value Systems," presented at the XIVth IAF Congress,
Paris, France, September 1963.

McGill, R., and Kenneth, P., "Solution of Variational
Problems by Means of a Generalized Newton-Raphson Opera-
tor," Progress Report No. 5 On Studies in the Fields of

Space Flight and Guidance Theory, NASA TM X-53024, MSFC,
March 17, 1964.

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V.,
and Mishchenko, E.F., The Mathematical Theory of Optimal
Processes, Interscience Publishers, New York, 1962,

p. 81.

Miele, A., "The Calculus of Variations in Applied Aero-
dynamics and Flight Mechanics," Optimization Techniques,
edited by G. Leitmann, Academic Press, New York, 1962,
Chapter 4.

Bliss, G.A., Lectures on the Calculus of Variations,
University of Chicago Press, Chicago, 1946.

Hinz, H.K., "Optimal Low Thrust Near Circular Orbital
Transfer," Progress Report No. 2 On Studies in the
Fields of Space Flight and Guidance Theory, NASA-MSFC
Report MIP-AERO0-62-52, June 26, 1962; also AIAA Journal,
p. 1367, June 1963.




RESEARCH DEPARTMENT
GRUMMAN AIRCRAFT ENGINEERING CORPORATION

COMPUTATION OF OPTIMAL INTERPLANETARY LOW-THRUST
TRAJECTORIES WITH BOUNDED THRUST MAGNITUDE
BY MEANS OF THE GENERALIZED NEWTON-RAPHSON METHOD

By

Paul Kenneth
Gerald E. Taylor

BETHPAGE, NEW YORK

.‘ﬂ'

290¢¢ ¢ON

373



‘ RESEARCH DEPARTMENT

GRUMMAN AIRCRAFT ENGINEERING CORPORATION
BETHPAGE, NEW YORK

COMPUTATION OF OPTIMAL INTERPLANETARY LOW-THRUST
TRAJECTORIES WITH BOUNDED THRUST MAGNITUDE
BY MEANS OF THE GENERALIZED NEWTON-RAPHSON METHOD

by

Paul Kenneth
Gerald E. Taylor

Summary
 Fa

The generalized Newton-Raphson method, an iterative
procedure for solving nonlinear operator equations, has
been extended in application to variational problems with
bounded control variables. A minimum fuel interplanetary
low thrust orbital transfer problem is worked out in detail
to demonstrate the practical aspects of the algorithm as
well as its computational effectiveness. The control vari-
ables are the thrust magnitude, limited from zero to some

prescribed maximum value, and the thrust steéring anglekg

. __’——/'/ -
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INTRODUCTION

For variational problems, not involving inequality con-
straints on state or control variables, the state equations
and Euler-Lagrange equations generally consist of a system
of nonlinear differential equations with two-point boundary
conditions. For such a system, the generalized Newton-
Raphson technique proceeds by solving a sequence of linear
boundary value problems in such a manner that the sequence
of solutions converges to the solution of the nonlinear
boundary value problem. The generalized Newton-Raphson op-
erator technique has been developed for such systems of or-
dinary differential equations with two-point boundary condi-
tions (Ref. 1) and successfully applied to various uncon-
strained variational problems (Ref. 2).

In this paper, we consider variational problems with
inequality constraints on at least one control variable.
Following Valentine (Ref. 3), a new variable is introduced
such that the inequality constraint may be replaced by an
equivalent equality constraint. The resulting nonlinear
system of state and Euler-lagrange equations now consists of
differential equations and algebraic equations. The gener-

alized Newton-Raphson method is applied to this nonlinear

375



oRerafor equation. Again, this is accomplished by solving
a sequence of linear operator equations such that the se-
quence of solutions converges to the solution of the non-
linear operator equation.

The algorithm is applied to the computation of minimum
fuel, low-thrust, Earth to Mars orbit transfer trajectories,

with bounded thrust magnitude.
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PROBLEM FORMULATION

Given the differential constraints

. 9, = ki - fi(t’ X3 +ees X5 Uy ceny U ) =0, (L

and at most 2nt+l end conditions involving t and X;, as
well as inequality constraints
Uy < ug < ug s K=1, ..., t <m,
min max
the problem is to determine the state variables Xi(t) and

control variables uj(t) so as to minimize the function

P = P(to, ter X (Eg)s +ovs X (EQ) S x (Eg)s o) xn(tf)> .

A set of new real variables Ay is introduced
(Refs. 3-6), and the inequality constraints on the control

variables are replaced by

. | o = (uK - up )(uK - uK> - ai =0 (2)

* Let
n r
F = z A(e)o; + z Ae(B)op =0, (3)
i=1 K=1

377



where the A(t) are undetermined multipliers. From a modi-
fication of the classical calculus of variations (Refs. 4-8),
we obtain as necessary conditions for the existence of a
local minimum of P:

(a) the Euler-Lagrange equations

d OF OF .
€ ok, = 0 R i=1, 2, ..., n
i i
oF .
Fonie 0 s j=1,2, ..., m (4)
J
OF
Sa. = 0 s K=1, 2, ..., ¥,
K

where the dt and dxi are differentials which are
connected by the prescribed end conditions,
(c) the Weierstrass condition, which for this problem is

equivalent (Ref. 4) to the requirement that

n

H = E: %ifi(t, Xys voes Xy s eees uﬂ?

i=1
be maximum with respect to the control variables uj

satisfying the imposed inequality constraints.
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To obtain the solution of the problem stated above,;the
generalized Newton-Raphson algorithm is applied to the oper:
ator equation consisting of Eqs. (1), (2), and (4). This
operator equation consists of a two-point boundary value
system of order 2n, in addition to a system of scalar equa-

tions of order m + 2r. The following numerical example

should clarify the computational procedure.

LOW-THRUST ORBITAIL, TRANSFER EXAMPLE — MINIMUM FUEL

The problem we wish to consider is closely related to
the last example in Ref. 2. Kelley et al. (Ref. 9) have ob-
tained results to the minimum time version of the problem
via gradient techniques. We wish to minimize the fuel con-
sumption of a low-thrust ion rocket which is to transfer
from the orbit of Earth to the orbit of Mars, in fixed time.
The orbits of Earth and Mars are assumed to be circular and
coplanar, and the gravitational attractions of the two
planets are neglected. The system parameters are: the ini-
tial mass my s 46 .58 slugs; the constant equivalent exit
velocity, ¢ = 1.831 x 105 ft/sec; and the propellant mass
flow, B, which is required to remain within the bounds

B -7 _
Brax = 6.937 x 10 slugs/sec, and Boin = 0.
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We now proceed to the formal statement of the problem.

!
-

Given the differential constraints:

T =w
2
w = %? - f% + %? sin ©
. (5)
v = - %; + — cos 6
m= - P
with the boundary conditions:
t=t0 t=tf
r(to) =1, r(tf) = r;
w(to) = W, w(tf) = we
V(to) = v, v(tf) = Vg
m(to) = m, m(tf) ~ open ,

where w and v are the radial and circumferential veloci-
ties respectively; r 1is the radius; and 6 1is the thrust
direction angle measured from the local horizontal. In ad-

dition, given the inequality constraints

p <B KB s

min = 7 = "max
determine the state variables r(t), w(t), v(t), m(t) and

control variables 6(t) and B(t) so as to minimize
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P=- m(tf)

Rewriting the inequality constraints on p as

YE.___ -p) -a’ =0,

min max

B -8p

the Euler-Lagrange equations, Eqs. (4), become

s 2K WV
A=A (- -
T W < 2 3> v _2
r T r
A=A Lo
W vV r r
A o=-2n Yy ¥
v wr vV r
5\ CB7\ in 6 + A ] 6
o m2(  Sin v €08 ) (6)

cp
0 =-—(-A_ cos 6 + A sin 0)
m' w v

= & : - - -
0 = m(kw sin 0 + Av cos 6) Am Aa(Bmax + Bmin 28)

0 =oar .
a

Equations (6) and the Weierstrass condition imply

-

sin 6 = A (xé + x3>-

(7)

nNj-

cos O = Av <K£ + %3>- .
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Substitution of Egqs. (7) into Egs. (5) and Egs.

yields the nonlinear boundary value problem

T =W =fl
. > K cP 2 2 TF 2
‘w=—--—+—?\<7\ +7\> = f
r r2 m W\ Ww v
-
v o= - X (N < z 4 K2> = f3
'y m VvV\Ww v
m =-p =f4
v2 2K WV 5
N (0% N2 = £
r r T
A= Yo - g0
W VI 'y
A o=-2N Y43 ¥ = £
v Wr vV r
3
m 2 w v
m
with bourdary conditions
t=to t=tf
r(to) =1, r(tf) =re
,W(to) = W, w(tf) = W
v(to) = vy v(tf) = Vg
m(to) = my
Ar(tO) = The constant A scales

0 multipliers. o
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In addition to the boundary value system given by

Eqs. (8), we have to satisfy the equations

0=(-8,)06 -8 -d - g
%
* _c 2 2 - _ _ _ 10
0=x <AW + Av> M M Crax ¥ Ppin = 2P) = 8 (9)
0= oﬁ\a = gll .

For the discussion of the application of the Newton-
Raphson operator technique to the nonlinear system consist-
ing of Eqs. (8) and Eqs. (9), we rewrite these equations as
follows:
X = F(X, t) s te[to, tf]
. (10)
G(X, t) =0 ,

where

F=<f,...,f

C = (gg, glO, gll\
: fi=fl<x1, , 1l,t> , i=1, ..., 8
. gi = gl <xl: ’ xll; t> ’ i=9, 10, 11,
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and

) =r® L xE© =wE oM =vm
) =n® 2 = A, x(®) = Al
) =, L= m , m=pO

0 =a@® , xT® =7

The algorithm now requires the solution of the sequence of

linear equations:

X 41 J(Xn, t)(Xn+1 - Xn) + F(Xn, t) (11a)

o
n

I(Xn’ t) (Xn+l - xn) + G(xn, t) (11b)

i
where J(X, t) 1is the matrix with elements Jij = Qig )
ox

i=1, ..., 8 j=1, ..., 11; and I(X, t) is the matrix

i
o)
with elements I,, = 8-, i=9, 10, 11, j =1, ..., 11.
1] BXJ
At every iterate n, xz = xz (xi, ooy x2> is ob-

tained from Eq. (11b). This relation is used to eliminate

xz from Eq. (11la). The functions xi(t), ceey xﬁ(t) are
. 9 10
then computed from Eq. (lla), after which xn(t), X (),

xil(t) are computed from Eq. (1lb). A description of the
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method of solution for the linear two-point boundary value
system, Eq. (1la), with the given end conditions is con-
tained in Ref. 2., The iteration proceeds until

p(xn+l, Xn) < b, where

8

POy X) = ) mex XL (0 - x(@®],  12)
i=1 0° °f

and © 1is a suitably small positive constant. The corre-

sponding iterate xn+l is accepted as a solution, and a

final check is made by integrating the nonlinear Eqs. (8)

with a complete set of initial conditions taken from the

final iterate, and with PB(t) computed at every integration

step by
j Bmax s when n> 0
5= 4 (13)
Bmin ) when n<o0,
where
_%_
€ /32 L 32\" .
"= (xw + 7\V> A

Equation (13) results from the Weierstrass condition, viz.,

maximizing H with respect to B.
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The data for the problem are normalized to obtain:

ry = 1.000 rf = 1,525
Wy = 0.000 We = (0,000
Vo = 1.000 Ve = 0.8098
my = 1.000 Bmax = (0.07500
A = 1,000 B . = 0.000

T min

0
K =1.000 c = 1,872 .

This results in a time unit of 58.18 days. The final time

t. 1s chosen to be 3.816 units (222.0 days). The starting

f

vector Xo(t) is chosen as follows:

xé(t) = ro(t) =, + ftf Q t
xz(t) = wa(t) = 0
0 0
xg(t) = vo(t) = roﬁt) (14)
xg(t) = mo(t) =1 - Z%;
xs(t) = A_ (t) = 1.000
0 r '

0
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0.5200 , for tel0, %tf]

S = A (0 =1
Yo
-0.5000 , for te(%tf, tf]
0.3000 , for telO, %tf]
() = !
x](6) = A, (£) =
0 1
0.000 , for te(%tf, tf]
xS(t) = A (t) = 0
0 - m, B (14)
(Cont.)
.9 _ max 27Tt
xo(t) = Bo(t) 5 <l + cos £ >
10(t) = a,(t) = Emé&' 1+ =
xp (£) = 95(0) = ¢ ( tf>
xél(t) = Kao(t) = 10 sin %i - 11 .

To carry out the necessary computations, the time in-
terval [to, tf] is divided into 200 equal subintervals.
After the switching times (n = 0) have been located,
within the accuracy of the grid size, the time steps in the
neighborhood of the switching points are further subdivided
into 10 equal intervals, and the iterations continued with
this refined grid. In this manner, it is possible to locate
the switching points, or points of discontinuity of the con-

trol B(t), with greater precision.

387



The sequence {Xn} converges to an accuracy of 4 sig-
nificant figures in 51 total iterations. The total computer
time (IBM 7094) required is approximately 2 minutes. Fig-
ures 1 and 2 illustrate the convergence for the control var-
iables 6(t) and B(t) respectively. 6*(t) and B*(t)
result from the final check of the nonlinear state and
Euler-Lagrange equations, Eqs. (8), with the switching
points obtained from Eq. (13).

With the same starting vector Xo(t), Eqs. (14), tra-
jectories have also been computed with final times
t

£= 195.0, 201.0, 208.0, 215.0 days. In Fig. 3 the final

time tf is plotted against the ratio of final mass to

Mg

initial mass m -

CONCLUDING REMARKS

With the integration routine utilized for these sample
problems, the solutions seem to be limited to an accuracy
of 4 significant figures. We believe that through the use
of higher precision integration schemes, presently under in-
vestigation at Grumman, more accurate results can be ob-

tained.
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ABSTRACT

In this report a step-up procedure for the selection of significant
estimation variables in a least squares problem is developed. Application
of this procedure to several examples is made, and a computer program

in ALGOL 58 compiler language for the Burroughs 220 computer is discussed.

WkéJ
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APPROXIMATING OPTIMAL TRAJECTORIES: SEILECTION OF SIGNIFICANT
ESTIMATTON VARIABLES IN A LEAST SQUARES PROBLEM

The Astrodynamic and Guidance Theory Division of the Aero-Astro-
dynemics Laboratory of the Marshall Space Flight Center is examining the
role of "large computers" as they may be exploited in the control and
guidance of missile performance. Under Contract No. NAS8-5365 the Georgia
Institute of Technology and its Rich Electronic Computer Center have been
studying such exploitation as it applies to the approximation of guidance
functions with multivariate functional models. Under this contract
attention so far has been focused on methods to reduce the computational

and variable-selection problems in least squares modéls.,

Background

The state vector, x(t) (describing the flight of a missile through
space) has the derivative X(t). These vectors along with a vector des-
criptive of the guidance function, u(t), satisfy equations of motion,

which may be expressed formally as

- F[x(t), x(t), t, w(t)] =0

The missile is intended to satisfy certain mission requirements at some
future time, tc, and we may indicate these requirements in the equations

describing terminal conditions:
efx(t,), %(t,), tc] =0

Note that the functions ¥ and G are themselves vectors, The guidance "~ .
problem may be expressed generally as that of choosing a "best" guidance

function u out of the class of possible guidance functions. In particular

we may wish to choose a function u in such a way as to minimize
te

S c(x,i,u,t)dt
o}
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In practical situations with real missiles we could not use the
exact optimum guidance function as a function of time because of measurement
errors and so on. The missile strays from the optimum path intc a situation
for. which the chosen guidance function is no longer best. It then becomes
necessary to calculate a new optimum guidance function based on new initial
conditions. In short it is important to be able to synthesize the optimal
guidance function, u, in terms of the state variables at each point in
the phase space.

One approach to this synthesis which has been proposed consists in
selecting a scatter of initial points (possibly organized in subregions
of the phase space); using a large-scale computer to determine the corre-
sponding values of the optimal guidance function; and then using some
approximation technique to estimate the guidance function as a function
of the state of the missile,

Various considerations, both practical and theoretical, suggest that
such an approximation be based on the criterion of "least squares.” Even,
however, if attention is restricted to this well-known method, difficultics
arise. In the first place fitting a function of several variables
becomes very quickly a huge matrix inversion problem. In an earlier
study done under this contract, entitled: "Least Squares Estimation of
Regression Coefficients in alSpecial Class of Polynomial Models," tech-
niques were described which reduced the large inversion problem to a
sequence of low-order inversions, when fitting balanced polynomials
to rectangular grids of data. While these techniques hold promise in
special circumstances, evidently they have a limited usefulness.

'A second major difficulty in least squares approximations arises in
deciding which class of functions or which subset of a very large class
of estimation variasbles will be used to approximate the unknown function.
Evidently, & method which elects a relatively few highly efficient
estimation variables also serves to keep the matrix-inversion problem under
control, since that computation depends directly on the number of estima-

tion variables used.
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It happens that there is a method available by means of which the
incorporation of estimation variables into the approximating functions
can be sequenced in what seems usually to be an efficient manner. We
shall call this formal procedure for activating estimation variables
simply the step-up procedure. The procedure appears first to have been
used by R. J. Wherry (Annal. of Math. Stat., 1931). More recent dis-
cussions have appeared by H. E. Anderson and B. Fruchter (Psychometrika,
1960), and E. F. Schultz, Jr. and J. F. Goggens (Bulletin of the Agri-
cultural Exp. Station, Auburn Univ., 1961). Since examples can be

constructed to show that the step-up procedure is not always optimal,
the difficult problem of assessing its merit arises.

The primary concern of this report is to consider the merits of the
step-up procedure, to seek improvement in it and to investigate rules
to govern the stopping of the selection procedure.

While this and related problems are of considerable interest and
pertinence in the overall trajectory problem, they should not be consid-
ered overriding. Other approaches, where the goodness of approximation
is more directly related to the cost criterion or to the equations of
motion and where the mission fulfillment is more directly imposed, show

at least equal promise and are being considered for subsequent study.

ObJjectives

1. To conduct empirical investigation of the efficacy of using the
step-up procedure in the selection of a fixed number of estimation
variables out of a larger number in obtaining functional approximations
by the method of IS.

2. To seek modifications of the procedure for the purpose of
enhancing its efficiency.

3. To develop reasonable rules which will control the process of
stopping the estimation variahles selection procedure and to study
empirically the sensitivity of the efficiency of the estimation to
variations in these rules.

4, To explore empirically the general applicability of low-degree
polynomial approximation (in the sense of least squares) to representative

functions of several variables.

397



5. To develop an efficient, flexible and unified computer program
which, in carrying out a least squares approximation, at least has the
option of utilizing such selection procedures and stopping rules as

have been developed.

Plan of Research

To accomplish the aims of this part of the study research was or-
ganized in four phases:

A. A review of the geometry, linear algebra and statistics involved
in the method of least squares and the step-up procedure. This phase
extended to include discussions of modifications to the step-up pro-
cedure and various criteris for stopping the selection process. Also
included were algorithms for computer programs.

B. Development of the structure of the empirical investigations.

In this phase decisions were reached on types of functions to be estimated,
data patterns, size of data base, specific form of the estimation variables
(as functions of independent variables), how data would be obtained and
reduced to the regression format with particular regard to the important
case of polynomial approximation.

C. Development of computer programs. In this phase algorithms devel-
oped in preceding phases were converted to programs, with attention to
computational efficiency and cost.

D. A battery of examples with interpretations and, if possible,
conclusions. In this phase a few preliminary examples were designed
to test the efficiency of using the step-up procedure. Later, more
sophisticated examples were used to develop the other objectives cited

above.

Summary
A. Mathematical review (see the supporting study titled: "Selection
of Significant Estimation Variables in a Least Squares Problem:

Mathematical Review.")
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The well-known method of least squares (LS) is invoked to estimate
a presumed functional relationship between a dependent variable Y and
a set of independent variables Xl""’XW on the basis of a set of ob-

served points. According to the method a class of functions of the form,

80 + 8, Zl(Xl""’XW) + .. + 8 Zp(Xl""’XW)’

is considered for all real sets of coefficients. The Z's are specified
estimation variables depending on the independent X's. For any function
of the above class, corresponding to an observed vector of X's, one
could compute values z“l, ,‘zup of the estimation variables and a value
&u = aj + alzul + eee + apz“p, which could be compared.with the corre-
sponding observed value y“ of the dependent variable Y. From this
specified class of functions the method of LS selects one for which is
minimized the sum of squares of the deviations of the so-called predicted
values &u from the observed values y“. Such & function is called a

best estimate or best-fitting approximation (in the class) in the sense
of 1S.

The choice of the functions to be used as the estimation variables,
Zl""’Zp’ is open, giving the method great: flexibility, but also making
it vulnerably dependent on the choice. TIn the next section of this
summary some discussion is devoted to the choice of Z's and the reduction
of data to the form of observation vectors (yu,zul,...,zup) on the
variables (Y,Zl,...,Zp). This form is now assumed.

The least sqQuares approach admits of an accessible geometrical
interpretation. Supposing there are N observation vectors, for each
estimation variable Zi consider the N observed values (adjusted to the
mean). These values constitute the i-th estimation vector Zg e Similarly,
consider the mean adjusted dependent-variable vector y. The IS pro-
blem translates to finding that wvector in the space spanned by the esti-
mation vectors which lies closest to the y vector. Or it may be inter-
preted as finding the projection of the y wvector onto the estimation

space.
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The cosine of the angle between the y vector and its projection
in the estimation space is called the multiple correlation coefficient,
R. It is a measure of the efficiency of the estimate, attaining a
maximum of unity when the y vector coincides with the projection estimate.

The difference between the y vector and its projection onto the
estimation space is called the error vector. A pythagorean property
holds, expressing the square of the length of the y vector as the sum
of squares of the lengths of the estimate and the error. The estimate
itself can be resolved into orthogonal components, and the same is
true of the error vector.

If only k out of the p available estimation vectors are to be
used to estimate y (corresponding to selecting k out of the p possible
estimation variables), a difficult problem of deciding which k to elect
~arises, since trying all combinations is ordinarily computationally
infeasible.

The step-up procedure is a practical, though not always perfectly
optimal, way to select k estimation vectors. It evolves naturally from
the geometric model described above. In this procedure the first
estimation vector is chosen by finding the one on which the y vector
has the longest projection (by the pythagorean property this leaves the
shortest error vector). In the next step for each of the remaining
vectors it is easy to determine the length of a component orthogonal
to the first vector chosen, whose square added to the square of the
projection of y on the estimation space of these two vectors. Selected
is the vector having the longest such component. The procedure is then
repeated.

Since the y vector may lie in the plane of two vectors but possibly
closer to a third vector (mot in the plane), the step-up procedure is
not always optimal, for it would activate the third vector first, then
one of the others, but the combination would not be as efficient as
the first and second.

A modification of the procedure has been incorporated to allow for

the elimination of a vector from the active estimation set. It works in
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the following way. The error vector for the k selected variables is
compared with the error vector when one vector is deleted from the
active estimation set. The difference measures the net reduction of
error due to the one vector deleted. Computationally it is easy to -
compare the lengths of these reductiong. - One may wish to eliminate a
variable which contributes little net reduction. A measure of the net
reductidn due to each estimation vector is provided by the cosine of
the dihedral angle~formed by the plane containing the y vector and

its projection in the reduced estimation space, on the one hand, and
the plane containing the two projections, on the other hand. This is
called the partial or net correlation coefficient between the dependent
variable y and the estimation variable in question.

It appears evident that the simple rule of selecting k of p estimation
vectors will not always be a good stopping rule. From the geometrical
description several other natural criteria emerge as possible stopping
rules whose use may be varied according to considerations of the particular
problem at hand. For example, if the multiple correlation coefficient
is "very high" the addition of other variables may seem unnecessary. Again,
even if R is not high, the modified step-up procedure may be making no
appreciable improvement in the estimate so that further addition of
variables to the active estimation set may be deemed useless. Also,
depending on the criteria for continuing to bring in new variables and
to eliminate o0ld ones, some stopping.rule should be available to guard
against cycling.

The most difficult choices for these decision rules are those
concerning whether to eliminate an active estimation vector and whether
adding one or several more will make any significant reduction in the
error vector. One might adopf the rule of introducing two vectors and
eliminating one, until a stopping rule stops the process. One migﬁt
eliminate the vector to which corresponds the lowest net correlation
coefficient, provided that the coefficient reaches a certain "low"
value. One might stop adding vectors if the last r addéd make an

average addition to R of less than some fixed amount. However, caution
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should be exercised in the fixing of criteria, since certain combinations
of these rules increase the chances of cycling.

Finally, we have considered elimination-stopping rule combinations
based of F statistics. Briefly, an F statistic is a ratio of the average
of certain of the estimation components to the average of the error com-
ponents. In a statistical context, if the estimation components have
on the average the same lepngth as the error components, they are con-
sidered insignificant and are attributable to random efror. In short
these vectors are not considered of estimative significance. From
such a point of view there is some intuitive appeal in the decision rule:
Do not add if F < 1; do not drop if F 2 1. However, the rationale
for using the F statistic rules is tenuous and, such as it is, depends
on hypotheses of a statistical model which are not always appropriate.

A fuller discussion of the statistical model is given in the supporting
study.

While the mathematical and statistical analysis suggested the fore-
going procedures and rules, it has also indicated considerable need for
the empirical tests subsequently made.

The mathematical analysis included a translation of the geometrical
steps described above into algorithms capable of being converted to com-
puter programs. These well-known algorithms also are developed in detail
in the supporting study with every effort made to retain geometrical

interpretations in the development.

B. Structure of the Empirical Investigations
The data were organized in two main phases. The purpose of

empirical runs in the first phase was primarily to gain insight on the
efficiency of the step-up method for activating a subset of estimation
variables out of a large set of such variables. The principal aim of
the runs in the second phase was to explore the relative merits of various
rules for stopping the step-up procedure of adding variables to the
active estimation set and rules for eliminating such variables. Auxiliary
purposes of empirical runs were to test and correct pertinent computer

programs and to obtain from diversified experience an idea of the general

validity of the IS approach as an approximation technique.
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As pointed out in the previous section, the generality of the method
of IS leaves conslderable latitude in the selection of test cases. In
organizing test runs representing a variety of problem types some of
the factors on which decisions had to be reached included:

1. The type of function to be approximatéd, including its form,
the number of variables and the selection of a representative
member.

2. The class of gpproximating functions, i.e., a selection of
the estimation variables Z, = zi('xl, cees Xy i=1,2,...,p,

where (X ..,Xﬁ) presumebly is in the domain of the function to

5
be approiimated.

3. The number, extent and distribution of data points.

Admittedly decisions reached during the test construction concerning
these factors were somewhat arbitrary. They were made, however, with
awareness of their significance.

Briefly,‘it was decided to construct data for a few selected functions
of three variables, using a rectangular grid of data and balanced poiy-
nomials as approximating functions. 1In addition, a few runs were made
using active data, which were developed in certain statistical regression
analyses. Except for the actual data runs the data grids consisted of
500 to 1000 points generated from evenly spaced values of the three
variables on the margins. Thus the undoubtedly important effects
(on goodness of fit) of varying the distribution of data points or
varying the types of estimating functions were not studied here. In-
deed these factors were held more or less constant in order not to
obscure the comparisons of variable-selection proceudres.

These decisions led to fairly general and easy algorithms for
generating data for a given test run and reducing them to the format of
IS input. Thus, for a given function F(Xl,Xg,X3) =Y, a given class of
balanced polynomials of the form
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Y=5 a X s
f0o0s"1 T2 73

and a given rectangular grid of points,
(xlt »¥op ’X3t ))
1 2 3

observation vectors (yu, 2417 Zyor et ZuP) were generated by the computer.

), and the estimation

3

variables Zi are the several ,terms of the balanced polynomial of the form

Here y, is the value of Y at some (xltl,xgtg,)g3t

while 204 is the value of Z, when (xl,xg,x3) = (xlt Koy s¥3y ). The
observation vectors were then in a form to obtain Lé estlmateé of the
coefficients in the best-fitting balanced polynomial, or more specifically
to manipulate in a way aimed at activating the most significant estimative
terms of the balanced polynomial as described in the foregoing section.

Runs in the first phase were limted to estimating a polynomial (of
higher order than the approximating ones) and estimating a rational function,
while the approximating balanced polynomial class was restricted to be of
second degree in X, and X and.first degree X

1 2 3
p of estimation variables (terms of the polynomial) to 17 or less. The

, which restricted the number

test procedure for these runs was, for each k = 1,2,...,p~1, to determine
the efficiency (multiple correlation) of each of the (i) subsets of k
vectors and compare the optimal set with the set produced by the step-up
procedﬁre. Computer time was a limiting factor in these tests.

Runs in the second phase included estimating an exponential function
and a Tew algebraic functions other than rational functions, and they in-
cluded two runs using actual statistical data. Some effort was made to
include poorly fitted functions as well as accurately fitted ones. Also,
the form of the approximating baianced polynocmial was stepped up to develop

47 estimation veriables. Usually, for each example, several runs were
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initiated in which were varied the policies of stopping the selection
procedure or of eliminating a wvariable.

Considered, but not developed in this study, was an experimental
design in which runs would be made for the various different combinations
of prescribed levels of the main factors thought to influence efficient
variable selection.

C. Development of Computer Programs (see the supporting study

titled, "Selection of Significant Estimation Variables in a

Least Squares Problem: Computer Programs.")

Corresponding to the two phases of the study mentioned in the
last section, two computer programs were developed. The purpose of the
first program was to compare in a few examples the subset of k estimation
vectors selected by the step-up procedure with the optimal subset of k.
This first phase of programming was begun before the Burroughs 5000 was
operational on contractor facilities and was programmed in the ALGOL 58
compiler language for the Burroughs 220 computer. Because of core
memory limitations the program restricts the total number of estimation
vectors to twenty-five. It would be a simple matter to translate the
program to one for the more advanced computer. This has not yet been
done, primarily because the number of comparisons to be made even with
the restriction to 25 variables makes for an almost prohibitive amount
of computation time.

The program depends on using (1) rectangular grid data and (2)

a balanced polynomial as the general form of the approximating function.
One part of the program, using as input the specified values of each of
the variables and the degree of the balanced polynomial in each variable,
generates internally the grid of date points and computes for each such
point the value of each term of the balanced polynomial. Thus the
estimation vectors are generated.

Also the program allows for a procedure to be inserted to incorpo-
rate the computation of the values of the function which is to be approx-
imated, at each of the grid points of data. Thus the dependent variable

vector y 1is generated.
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As an intermediate calculation the program mean adjusts the above

. vectors and produces the intercorrelation matrix for all the vectors,
including the dependent variable vector. There will be L1L2...Lh= p+1
such vectors. These are restricted in number to 25.

In the next part of the program, for each k = 2,3,..., p-1, each
one of the (i) subsets of k estimation vectors is manipulated to compare
the estimation efficiency (multiple correlation) of those subsets. For
each k the subset of k vectors which gives maximum efficiency is printed
as is also its corresponding multiple correlation coefficient.

In the final part of the program the estimation vectors are se-
lected in the order prescribed by the step-up procedure. At each stage
an ihdex of the estimation vector introduced at that stage is printed
out, as well as the multiple correlation coefficient obtained with the
set of vectors selected up to that stage.

In this program checks were instituted to restrain the incorporation
of vectors which were practically dependent on vectors already included
in the active estimation set. Also, considerable effort was made to
abbreviate the matrix-inversion type calculations in order to produce
only the multiple correlation, since the number of such calculations,

P - p - 2, rapidly gets large.

The purpose of the second program, to a considerable extent
based on the assumption that the step-up procedure was reasonably
efficient, was to make available a fairly flexible program for esti-
mations based on the method of LS in which would be included at least
options for activating subsets of the esimation variables according to
the step-up procedure and other modified procedures, and also included
would be options which could be exercised to stop the selection. The
program was done for the Burroughs 5000 in the ALGOL 60 compiler lan-
guage.

As it now stands the program has several ovtions for obtaining the
basic matrix of the dot products of the adjusted vectors (which matrix
reduces to the intercorrelations matrix when the rows and columns are

appropriately standardized).
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(1) One of these options is the same as in the previous program,
except that the admissible order of the matrix has now been
increased to more than 100. This option allows for the rapid
generation of data for experimental studies.

(2) Either the matrix of dot products or the intercorrelation
matrix may be read in directly. This allows further study,
especially of subset selection procedures, of previously
studied regression problems, least squares fittings, and so
forth.

(3) Observation vectors may be directly read in. This will be
the way data will arise in most realistic problems, although
values of the estimation variables may require preliminary
transformation (e.g., if the estimation variables are terms
in a balanced polynomial).

In this program, once the basic matrix has been obtained, it is
retained in memory and can be used over and over, to facilitate compar-
isons when various procedures for selection, elimination, and stopping
are employed.

In case the intercorrelations matrix was not introduced directly
the program gives an option for computing and printing it and using it
in the remainder of the program.

In the main part of the program estimation vectors are introduced
in the priority order dictated by the step-up procedure. In addition,
however, the procedure carries options which allow for various rules
to be set to make possible the elimination of an estimation vector and
the stopping of the selection process.

At present there are two criteria either one of which may be used
to eliminate an estimation variable. One option automatically eliminates
an estimation variable after two have been included. Of course the one
deleted is the one of lowest net correlation with the dependent variable
(see Section A preceding). In the other option the pertinent F statistic

for the variable with smallest net correlation is computed (see Section A)
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and is tested against a preassigned threshold value. If it is below this
value, the variable is deleted. It is possible to prevent any such
eliminations by setting the threshold equal to zero.

Currently there are four criteria which can be used to stop
the process of adding estimation variables. The program effectively per-
mits bypassing any or all of these criteria. They are:

(1) Stop if the F ratio for the next single variable to be intro-
duced does not exceed that threshold value corresponding to a
preassigned significance level. The procedure stops after
that estimation variable has been added. This can be bypassed
by setting the threshold at zero.

(2) Stop if the current value of the multiple correlation coefficient
is sufficiently large. This can be bypassed by setting the
multiple correlation threshold at unity.

(3) Stop if the number of variables chosen reaches a preassigned
number. This can be bypassed by setting that number equal
to the total number available.

(4) Stop when the number of computational iterations for adding
or eliminating a vector has exceeded a preassigned number.

It is noteworthy that the computational procedures for eliminating

and for adding a vector are the same, once the vector has been earmarked.

It should also be mentioned that the same precautions as in the earlier

program were taken to prevent the introduction of almost lineérly dependent
vectors.

In this program of course the output includes the LS regression co-

efficients of the selected estimation vectors, as well as indices of the

vectors selected, and the multiple correlation coefficients.

D. Test Runs on the Computer (see the supporting study titled,
"Selection of Significant Estimation Variables in a Least
Squares Problem: Empirial Computer Studies.")

As indicated in previous sections, these tests were broken roughly

into two phases. In a very limited way the preliminary set of tests was
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conducted to gain a measure of confidence in the step-up procedures as

a means for selecting an efficient subset of estimation variables in

in a least squares model. In the tests made a balanced polynomial of
relatively low order was selected, the terms of which provided the full
set of estimation variables. Estimation vectors, as well as a dependent-
variable vector, were generated from rectangular design data. Dependent-
variable data were computed as values of the function which was to be
approximated. As described previously, subsets of estimation vectcrs
selected by the step-up procedure were compared with the optimal set.
Primary difficulty in test runs arose from fact that the determination
of the actual optimal set of k vectors required comparisons of (i) sets
of vectors, where p was total number of estimation variables available.
Computational feasibility dictates that p be severely restricted.

Nevertheless, several preliminary runs were made where p was kept
to about 11, and in all cases less than 18. Several functions were approx-
imated. These in general represented the class of rational functions.
For one of the functions, which had a pole in the region of data points,
only a poor approximation was obtained. Otherwise, even with low-degree
polynomials, the multiple correlation coefficient was rather high.

In most of these tests the step-up procedure selected, at each
stage, the optimal set of variables. There was one example, however,
where the procedure did not select the optimal set of two vectors, al-
though the correct selection of a larger number of variables was achieved.
It is also noted that, when R became stable or nearly so, additional
variables introduced by the step-up procedure were not always optimal.

It is possible that this could- have been the result of round-off error.

In general these experimental results indicated the step-up pro-
cedure is probably quite efficient, at least when a fair scatter of
points is available. It was noted that, even when the method failed,
the value of R was near optimal. The actual occurrence of failures,
even at early stages, suggested that some means for eliminating var-
iables would be desirable. Such techniques were introduced and used in

the second phase of testing.
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For the second set of test runs the Burroughs 5000 program was
used. As mentioned earlier, this program allows for a larger number of
estimation vectors to be handled, incorporates options of data input,
variable elimination and program stops, but does not make the comparisons
to determine a purely optimal subset of estimation variables. In most
of the examples studied in this phase several runs were made for each
example to throw light on the effects of changing the pattern of
variable elimination and stopping rules. Attention was focused on
varying the elimination criterion, the effects of varying other rules
being discernible from the print-out, with the principal basis for
elimination being an F statistic (see Section A of Summary). To observe
the effect of certain stopping rules (which can be set in the program
options) print-out includes for each "sweep" (where a variable is elimi-
nated or added to the estimation set) the number of sweeps up to that
stage, the number of estimation variables being used, an index of the last
one eliminated or added, the F, value of the F statistic for a variable

I
brought in or the F. value of the F statistic corresponding to a variable

being eliminated (ig it was below the criterion 1eve1), and the square R2
of the multiple correlation coefficient, as well as the reduced Re which
diminishes if and only if the last variable introduced gave an FI value
less than unity.

The examples included: Approximating three non-polynomial functions,
with the available variables being the 48 terms of a balanced polynomial
cubic in X1 and X2 and quadratic in X3 and the 500 data points generated
from X, = 0.25(0.25)2.50, X, = 0.25(0.25)2.50 and x3 = 0.25(0.25)1.25;
approximating a dependent variable from actual data with available
variables constituting a balanced polynomial in four variables, where
the data are (as would usually be the case in practice) not in rectangular
design; and aﬁproximating a dependent variable from actual data where
the intercorrelation matrix of available estimation vectors was given,
the presumption being that these could be non-polynomial terms.

In the first group of examples the functions chosen to be approx-

imated were

Py (X Xp0%5) = exp(-X, K X.)
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As in all examples the dats were mean-adjusted. The functions Fl and F3,
especially F3, were very closely approximated (in the range of data) by
the full set of U7 estimation vectors in the sense that R2 was near unity,
while R2 for the case of F2 was near 0.9. For each example runs were
made with F,. set over a range of values from high to low. In the case

where FO wag set very low the tendency was to eliminate few or no variables
and thus to be very close to the simple step-up procedure.

The test runs for these examples show that diffefrent subsets of
estimation variables will be selected when the elimination (and stopping)
rules are varied. They provide concrete examples wherein the step-up
procedure is bettered by a procedure modified to include an elimination

criterion; where the opposite happens; where an F_ stopping criterion of

1.00 (on the last variable brought in) could stopIthe procedure which if
continued would later introduce variables significant at this same level.
These test runs suggest, but not markedly or universally, that the elimi-
nation criterion is effective in obtaining a higher R2 for the same number
of estimation variables; that a high criterion value is more effective for
variables selected early but not for those selected iater; that the FI test
may stop the procedure too soon unless modified; that different problems
seem to need somewhat different rules; that while the set of variables
selected may vary considerably R2 has a tendency to be fairly stable for
different procedures.

The examples with actual data provided experience with data more of the
type expected in a realistic problem. In addition the first provided a
good example in which an F stopping rule based on a single variable (last
introduced) would have stopped the procedure too soon. The last example
illustrates another point, viz. that out of 1h variable the last nine
variables tested together are not significant at 50% level while the 6th

one tested alone is significant at this level.

411



It should be noted that in all the examples, in terms of the multiple
correlation coefficient, a few estimation variables usually accounted
for most of the value of R2.

It is recommended that further insight be obtained by examining the
summary data for the various test runs, given in the supporting study refer-

red to above.

Conclusions and Recommendations

The step-up procedure, which first activates the one estimation
variable best in the sense of least squares, activates next the one which
contributes the most to a further reduction in the sum of squares
and so forth, is supported as an efficient and computationally feasible
procedure for selection priority-rated estimation variables in a least
squares approximation problem.

The nonoptimality of the procedure is manifest in practice. How-
ever, the evidence is strong that even in such case the results are near-
optimal, as measured by the multiple correlation coefficient, R. The
empirical evidence indicates more reliability of the step-up procedure
in the activation of the earlier and presumably more significant variables
than in later variables. When a large number of estimation variables
is involved, the optimal value of R appears to be nearly reached by
several subsets of estimation vectors. Thus, although frequently in
these cases the set selected by the step-up procedure is not optimal,
it is very nearly so.

If it is important to restrict the number of estimation variables,
there appears to be a need for a means of eliminating variables previously
activated. The procedure of eliminating an active variable whose net
contribution to the reduction in the sum of least squares is (and
small) is practicable and frequently effective. Examples show, however,
that the elimination modification does not always improve on the simple

step-up procedure. Moreover, it carries the same cost as activating an
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estimation variable. No fixed elimination criterion is best for any
wide variety of problems. The experiments indicated an overall tendency
for a large elimination criterion to be more effective when the active
estimation subset is small and a small criterion to be more effective
when the number of active estimation variables has become sizable.

The use of rules to stop the activation of additional estimation
variables must often depend on such factors as available computer time
and rate of computer time utilization. A comprehensive set of rules,
which may be used in various combinations, includes stopping when R
is sufficiently large, when the activation of additional variables does
not eontribute significantly to the estimation, when the number of
variables reaches a preassigned number or when the computational pro-
cedure begins to cycle. Examples show that the second of these can
occasionally stop the process too soon, so that the contribution of the
last several active variables, rather than just the last one, should
probably be tested. The speed with which variables were eliminated or
introduced in the examples indicates that large blocks of variables
could be introduced before making any decision on which variables to
keep active.

The study shows that at the current state of computer science it is
still infeasible to examine all combinations of subsets of estimation
variables to determine the optimal subset, unless the total number is
quite small, and thus that the need remains for such a procedure as
the step-up procedure. The study has also given evidence of the fea-
sibility of the rapid selection of efficient estimation variables even
from a set of several hundred, using a fairly sophisticated system of
optional variable-elimination and stopping rules.

Finally, with reservation, it should be noted that in all the examples
there was a marked relative efficiency of a small set of active esti-
mation variables to the entire set of estimation variables available.

In view of the foregoing results the step-up procedure is recommended

as an effective means for selecting priority-rated estimation variables
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in a least squares analysis. The use of the modified procedure and the
various stopping rules is also recommended with the admonition that the
various settings ought insofar as possible to be adjusted to suit the
experience of workers familiar with the problem area under study.

Specifically, with regard to the context of estimating optimal
trajectories, i.e. with regard to the problem giving rise to this study,
it is recommended that further general analysis of the method des-
cribed herein, either theoretical or empirical, not be undertaken, but
that the method and experience gained be'applied in a series of exper-
iments with actual trajectory data as soon as possible, where the exper-
ience of researchers in the field and the knowledge of physics pertinent
to the problem will be utilized to help delimit the class of approximating
functions.

Finally, using methods of design of experiments and a limited class
of functions presumably pertinent to trajectory problems and including
some live data, it may be feasible to study the effects (on approximation
efficiency) of varying certain factors such as data distribution, type

of approximation, elimination criterion, and so omn.
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SELECTION OF SIGNIFICANT ESTIMATION VARIABLES
IN A LEAST SQUARES PROBLEM: MATHEMATICAL REVIEW

1. Introduction. The principle of least squares (IS) can be
formulated in the following terms. Presumed to exist is some sort of
functional dependence of one variable, Y, called the dependent variable,

on a vector, (X ..,Xﬁ), of m other variables, called independent

5
variables. Available is a number (say N) of observations, i.e. values

of Y corresponding to values of the vector (Xl""’xn)' Next is chosen a
class of admissible functions of the form,

8,2, (Xl""’Xﬁ) + ..+ apr(Xl,...,Xﬂ), where the Zl""zp are fixed
functions of the X's and the parameters of the class are ags a2,...,ap.
The functions Zi presumably are chosen to enhance the likelihood that

the unknown functional relationship (between Y and the X's) will be nearly
of the prescribed form. Each function of the class is linear in the
variables, Zl""’Zp’ which we shall call estimation variables; each
function is also linear in the parameters. In any case the basic idea

in the least squares approach is to approximate the unknown functional

relationship with one of the admissible functions. For any one of the

Xul""’xuﬂ)’

~

functions in the class, corresponding to each observation, (
r

is the value of the function, y =a.2 + ... +az , where

¥ 17ul P HD
21 = zZ; (Xul?""xuﬂ)’ which is comparable with the value of Y (say yu)
corresponding to this same observation, (Xul""’xuﬂ)° The sum of squares,

N
~ 2
pX (yu - yu) s
p=1

is taken as a measure of the estimative value of the function

~

Y = alzl + .00+ aPZp. According to the principle of least squares, out

of the class of admissible functions

éj = {YIY = alzl + ... + apr}
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is chosen as an estimate of Y one function which minimizes the sum of
squares of deviations. Such an estimate {we shall see that one does
exist) is written as § = ZE biZi; we shall call such a function a best

estimate or best-fitting approximation (in the class) in the sense of

least squares. The sum of squares of deviations, Z§(§u - yu)z, is

called the sum of least squares or the residual sum of squares due to

error. The procedure of obtaining a best estimate in the above sum

is frequently called a regression analysis, or more properly a linear

regression analysis. The bi are often called regression coefficients.

The method of IS was known and used by Gauss over 150 years ago.
He discovered that under certain conditions the method of least squares
in a sense yields an optimal estimate. This is the famous Gauss-Markov
theorem. Briefly, the principal hypothesis for this theorem is that
except for random deviations the observed values of Y are values corre-
sponding to one of the functions in the classg/. The random deviations
are assumed to be statistically uncorrelated, with a common variance and
mean zero. Under the additional hypothesis of normality of the distribution
of these deviations an elegant statistical theory of estimation and
hypothesis testing can be constructed. The statistical model is dis-
cussed briefly in Section 5 below.

The method of IS is used widely in numerical analysis even when the
support of the Gauss-Markov theorem cannot honestly be invoked. In
many cases other methods perhaps are equally or more justifidble; but
often the method of LS has an intuitive appeal in that it seeks an
estimate which minimizes one obvious measure of error.

It is also possible to consider classes of admissible functions,
from which an estimate will be chosen on the basis of the LS principle,
which classes are nonlinear in the parameters. In many instances such
problems are resolved satisfactorily by iterative techniques. The
procedure of obtaining estimates of the parameters in such a case is

called a nonlinear regression analysis.
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Excellent accounts of the statistical linear regression model are
given in GRAYBILL,SCHEFFﬁg and ZELEN. The method of LS is given space
in most numerical analysis books, and sometimes the nonlinear case is
discussed. E.g., see SCARBOROUGH. Nonlinear regression analysis is.
treated from a statistical point of view in WILLIAMS.

In.applications of LS it is often the case that the number of
estimation variables, for which values are computable from observations
on independent variables, is very large. Certain recurring and nagging
questions arise, varying somewhat with the circumstances. If only k of
p variables can be used, which k should be chosen? Does the use of
additional variables contribute significantly to increased efficiency of
estimate? The second of these questions is not mathematically mean-
ingful until the work "significantly" is defined. However, in the
context of a given problem, the question is one that frequently must
be raised, given meaning and acted on.

There is an obvious answer to the first question raised above, viz.,
to determine by computation which of the (i) sets of estimation variables
yields the minimum sum of least squares from the data. Unfortunately
this straight-forward procedure is computationally infeasible. A
more tractable and completely reliable method of finding the optimal
set of k estimation variables remains an open problem. However, at
least . as early as 1931, WHERRY proposed a procedure for selecting a
reasonably efficient subset of estimation variables. This procedure we
call -~ becausevit has become our habit -- simply the step-up procedure.
It consists in selecting first the one estimation variable best in the
sense of IS, next the one which contributes the most to a further re-
duction in the sum of IS, and so forth. In this way variables are added
ﬁntil some rule stops the process. The procedure is computationally
very feasible and fast. However, it is easy to show it is not always
optimal. The step-up procedure has recently been described without
much critical analysis in papers by ANDERSON and FRUCHTER, and SCHULTZ
and GOGGANS.
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The aims of the present paper are: To illuminate the method of LS
in linear regression analysis with geometrical arguments, giving clear
interpretation of certain measures of estimation efficiency; thus to lead
into a natural development of the step-up procedure where its weakness
as well as its intuitive appeal are exposed; to examine the geometrical
structure for a procedure for elimination of a variable previously
selected, and thus mitigate the flaws in the step-up procedure; to
explore the statistical model for reasonable decision rules on when to
eliminate and when to keep adding variables; and finally to provide a
translation of the various geometrically conceived procedures to comput-

able algorithms.

2. Geometric formulation of the principle of least squares. The

notion of obtaining an estimate, T - ZE bizi’ out of the admissible class
which minimizes the sum of squares of deviations, is one admitting

of accessible and correct geometrical descriptions. Such a formulation
is helpful in understanding the step-up procedures for selecting significant
estimation variables (to be described in the next section) and seems to
hold the only hope of devising techniques even more defensible than the
step-up procedure. We proceed now toward such a formulation.

Assumed available are the N observation vectors, (yu,zul,...,z ),

94

B =1,2,...,N, where z . = Zi (xul,...,xun), as Indicated in the pre-

ceding section. Assocgited with each of the p estimation variables

Zi’ i=1,2,...,p, is the vector, lying in the euclidean N-space EN,

consisting of N values Zui’ p=1,2,...,N, observed on that variable.

We shall call these vectors estimation vectors; we write them,zi(i =1,2,..0,D);
and for matrix manipulations they will be thought of as column vectors.

Hence, using the letter T to indicate matrix transpose, zg = (Zli’ ceeyZ

Zo47 i)

In this section the N x p matrix of these estimation vectors will be
denoted as z. Similarly, the symbol y represents the vector of the
observed values of the dependent variable Y. It will be assumed,
without any real loss of generality, that N > p and that the estimation
vectors are linearly independent. Thus the estimation vectors consitute

a2 basis of a p-dimensional vector space Vp, lying in EN.
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Consider now the sum of squares criterion. Writing the parameter

vector as a, this criterion is

gla) =
M

it M =
<
1
<

where d = y -'5 is the vector of deviations. Note thatly = ZE aizi 1%es
in the vector space Vb generated by the estimation vectgis and that 4@

is the square of the (euclidean) distance between y and y. Since the

aim was to determine b such that g(b) = min {g(a)la}, the least squares
problem may be interpreted as finding a vector in the space spanned

by the estimation vectors which lies nearest the dependent-variable
vector y.

Geometrical intuition now supplies the correct solution to the least
squares problem; viz., the vector in Vp lying nearest y is the projection
of y onto Vp' Other important points are indicated by the geometry.
Writing § as the projection of y onto Vi, e =y - 9, and e2 = eTe, ete.,
pythagorean relations are indicated. E.g., y2 = 92 + e2; i.e., the square
of the length of the dependent-variable vector equals the sum of the
squares of the lengths of the best estimate vector and the least
squares residual error vector. This is often stated as, "The total
sum of squares equals the sum of squares due to regression (estimation)
plus the sum of squares due to error.” Also, if ¥ = Zaizi is another
vector lying in VP, ifd=1y -15, then d2 = e2 + (9 -'§)2 . Also, the
e vector will be orthogonal to Vb. Finally, the angle between y and
its projection should be less than the angle between y and any other
vector in Vp. Thus cos 68(y,§) > cos 68(y,¥), where 6(u,v) means the angle
between vectors u and v.

In statistical terminology the cosine of the angle between two such

vectors is called a correlation coefficient. Recall that

2u.v

(u-v) 3 i'i
cos 6(u,v) = =
u2v2 'Zu§2v§
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In the above instance cos 9(y,§) = R is called the multiple correlation

coefficient between y and §. Note that this should be unity if y does
indeed lie in VP, and should reduce progressively to zero when the esti-
mation space is less and less effective. Thus R provides a rather use-
ful and suggestive index of the efficiency of the estimation space. The
square of the length of the least squares residual error vector, eTe, is
another closely related measure of the efficlency of estimation.

The situation is represented schematically in the following diagram:
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The foregoing geometrical discussion can be substantiated with a
detailed algebraic development. Such substantiation is a consequence
of the argument to follow, but the primary purpose of the argument is
to make the geometrical entities explicit, to make essential quantities
computable and to set the stage for the next section.

The estimation space Vb is spanned by sets of orthogonal vectors
of unit length. Iet z¥%, zg,..., z; be one such set. Since every vector

1
in VP is a unique linear combination of the estimation vectors,

¥ = +
23 T 47%

+ VA
%1p%p

Z; = 11 LT Dop

i.e., z¥ = zQ, where Q is a non-singular p x p matrix, and, of course,
z = z*Q,_l. Also, every vector in V_ has a unique representation either
as a linear combination of zl,...,zp or of zi,...,z%. Ifl; lies in VP,
then there exists a unique vector a such that ¥ = E{ aizi = za, and there
exists a unique vector a¥* such that y = g*a*. But z = z¥ Q ~, so that
a¥ = Q-la. Thus there is a one-one correspondence between coefficient
vectors a for the z basis and vectors a* for the z¥* basis. In varticular,
if b* is such that 9 = z¥b¥ is the one vector in V_ closest to y, then
& = zb, where b = Qb¥. P

With these orthogonal vectors z* in mind an orthogonal trans-
formation is now imposed on the points in EN in such a way that, in
the transformed space EN', the z* become the unit vectors Uy, u2,...,up.
Such a transformation is accomplished with an N x N orthogonal matrix P
whose first p rows are the vectors z*T. It is easily seen that distances
and angles are preserved under such a transformation, so that the least
squares problem is invariant under the transformation. Note that the

]
image Vp of Vb is simply the linear combinations of the unit vectors,
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ul,...,up. Let y' = Py, and let y = z¥a¥* lie in Vb, so that y'= ZE a? ui.

Then the square of the error vector is

ata = a'Tar = (y' - Za?ui)T (y' - mtu) =0y - at)® + Z§+1yﬁ2 :
Evidently the projection of y' onto V£ ought to be the vector whose first

p components are those of y' and whose remaining components are zero.

Thus the a? which produce the combination of ug (i = 1,2,...,p) con-

stituting the projection of y' on Vé are yi. In short, b? = yi, i=1,2,...,p.
That this is correct algebraically can be seen in the preceding equation,
where it is obvious that these are the values of a? which minimize the

square of the error vector. Write §' = EE b¥u, = [yi,...,yﬁ,O,...,O]T.

Note that the residual error vector [O,...,O,yr')+l yﬁ]T = e' so that
yeeey

e' and 9' are orthogonal. Note also that Zﬁ (yi - a-)l(')2 = (9' -y

hence, from the foregoing equation, that
A DR CAE DR AR R

Having seen now that, relative to an orthogonal basis of V_,
b¥* = z*Ty (which follows from the fact that b? = yi and yi = z§ y for
i =1,2,...,p), it is now desirable to obtain ¥ and eTe in terms of the

original estimation vectors and the dependent variable vector. But

§ = z¥b¥ = zb, where b = Qb¥* = Qz*Ty = QQTzTy. Now

At a0t

(@Dt =gt gt =qt axlaxgt = (2%q T

HT (2xq7Y) = 2.

Thus, writing h = sz and g = zTy, in terms of original data, b = h-lg.
Also

2

e = Eﬁ y12 =

g = b*2 = y‘T Z*Z*Ty = yTZQQTZTy = (zTy)Tb = Zbigi'
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Thus computationally the problem is one of solving the system of
equations hb = g. In the succeeding discussion it will be important to
remember the following principle which summarizes much of the preceding
development and unifies the geometry and algebra of the least squares
problem: Given a set of k linearly independent vectors ZyseesZy in

T

an euclidean space and a (k+1)-st vector w, if h = 27z where z = (zl,...,z

")
and v = sz; then the solution x of the equations hx = v is such that

zx 1s the projection of w onto the space generated by the Zss and the
solution effectively resolves the w vector into its projection zx

and a component, e = w - 2zX, arthogonal to the projection.

3. The Step-up Procedure. In this section emphasis is shifted

to the selection of a subset of (say) k estimation vectors out of a total
number of (say) p. An optimal set of k, by definition, will be that

set of k corresponding to which the length of the error vector is least
(or equivalently the multiple correlation coefficient R is most). The
plausibility of the step-up procedure, as well as its deficiencies, will
be seen from the geometrical development. Computational feasibility

and procedures will be evident from the corresponding algebra.

For the moment we suppose that k-1 vectors have been chosen and
that our purpose is to add another one from the p-(k-1) remaining. We
shall refer to estimation vectors selected as being in the active esti-
mation space or as being active.

With regard to a least square problem involving y and the k-1
active estimation vectors (which of course are a basis for a vector

space V. of dimensionality k-1) everything in the preceding section is

directl? ipplicable. This succession of problems with 1,2,...,k,...,p
vectors in the active estimation space is sometimes called the succession
of the 1st, 2nd,..., kth,..., pth fittings. We shall frequently use a
superscript to indicate the fitting, or dimension of the active estimation
space. This notation does not specify which of the vectors are in the
active estimation space, but we shall tacitly assume they have been re-

labeled so that the active estimation vectors are now Z1s ZoseesZy q-
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According to the preceding section
(k-1)

9(k-1) - gkl g (k-1) 2, = L (E-1) , (k-1)

i=1 1 (1,{_1)
. . . (k-1) (k-1) = g ,
where b is the solution to the system of equations, h b

with h(k-l) = z(k-l)T z(k-l), g(k-l) = z(k_l)T y, and z(k-l) = (Zl""’zk-l)'
a(k-1)

Recall that ¥y is the projection of y onto Vk-l and that the residual
(k-1)

b(k-l).g(k-l))_

error vector e has length whose square is (

Suppose next that the kth vector to become active has been selected.

Consider the system of equations h(k-l) x(k-l) = V(k-l) (k-l)=

T M -
AEDT Recall thag FL g (k1)
k i=1 i

k-1  (k-1)
t - - T
Vk—l’ and Zy =2y lel Xy z

» Where v

z, is the projection of 2y onto

i is the component of z, lying orthogonal

k

to the space spanned by the ZyseessZ The vectors z. = zl,zé,...,zé,...,

k-1° 1

‘thus defined are a particular determination of Gram-Schmidt orthogonal

vectors. In matrix form the matrix of the first k of these Gram-Schmidt

vectors is

L W@ e ]
1 1 e T
0 1 - x2(2) cee e
z'(k) =z (%) Q'(k), where Q'(k) = . 0 1 .
. «_(k-1)
. ’ . -1
o 0 . o 1

from the equation above.

Normalized Gram-Schmidt vectors are obtained when the columns of

(k)

1
are divided by (zi . zi)2. Thus orthonormal Gram-Schmidt vectors are

Q'
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(k) (K)o (k)

(k)

where Q is upper triangular with the reciprocals of the lengths of
the Gram-Schmidt vectors in the diagonal.

Recapitulating at this point, we haye an orthonormal basis for the
active estimation space in terms of the Gram-Schmidt orthogonal vectors,
where the last Gram-Schmidt vector was the component of the last esti-
mation vector selected orthogonal to the space of the others.

It is interesting to note that the lengths of the Gram-Schmidt
vectors zi

In fact, using the basis z{,...,zi,derived from the Gram-Schmidt vectors

as the orthonormal basis of the previous section, it follows from the

are readily available from the original estimation vectors.

results of that section that z*(k) = z(k) Q(k) where Q(k) is triangular
. 2 .

1 -1 T
with (z) * 2/)72 = qkk,(al))d_ that 18 2 g Q)T ibing
-1 k = 2 - v, 1 -1
o) _ (875, that a ™ = Uy = (zg = z0)7"
Now, given orthonormal vectors, zi,...,zk_l*, zi, from the preceding
| Vas Zg;i bi*e, where

section the square of the projection of y onto Vk-

(D) ()T

while the'square of the projection onto Vk is 2§=1 b?e, where

welE) (ke

Thus, bie is the increase in the square of the projection vector obtained

by activating the estimation vector z, (whose component orthogonal to

is zi); or, equivalently, biz is the reduction in the square of the

residual error vector obtained by activating z

V-1
o
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Now the principle of the step-up procedure becomes clear. Given the
problem of augmenting by one vector an active estimation set of k-1,

the answer is to choose that one for which the new projection of y in Vk

has the largest component orthogonal to the o0ld projection in Yk-ls i.e.,

choose Z) so that relative to the augmented Gram=-Schmidt orthonormal

2
system, zﬁ,...,z z¥,b¥*" is maximum.

*
k-1’"kK’ "k

Again, it is importent to be able to examine what values b§2 could

have for the various possible vectors which could be chosen as Zyes and

to do this easily in terms of the original vectors. But recall that
-1
() () 00 () () () (07 (1)

so that the triangularity of Q(k) implies that

o L (07

k 2 k

*= * = .

A Pk = Px 2 OF By - (x)
Kk

It is worth noting that the residual error vector can be con-

(k) A(k)

sidered as a final Gram-Schmidt vector, since e =y -y ’, where

A
y(k) is the projection of y onto V.. But we have seen that the reciprocal

k
of the square of the kth Gram-Schmidt vector is the last diagonal element

(k) (k)

of the inverse of h'"’'. Thus, if the h
T
(k)

matrix being used is augmented
with an additional column z y and a symmetric row, corresponding to
the dependent-variable vector y, then the last diagonal element of the
inverse of this sugmented matrix will be the reciprocal of the sum of least

squares.
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A computation synthesis of the procedure can be envisaged as a

sequence of gaussian, elimination tableaux, where starting with

hyy e hlp g8, 1 0 ... © 0
o . °. . :
. . . .. ‘. 0
h s e h ’ O e e O l O
pl pp &p
Toc| o 0 ‘1
gl ee s gp y y— s e s e e
after k-1 stages we have
(k~1) (k-1) (k-1) (k-1)
1 e e hl,k LI N ] bl 11 LN N al, k-l O ¢ O
0 R . . . . . : .
. ‘. 0
(k-1) (k-1) (k-1) (k-1)
o .. 0 ek ot [Pkl [ %k-2,1 0 fkelk-1{o ... o]0
(k-1) (k-1) | . .
o ... e OF o e |y : : 10... 0]o0
0°.". o],
. . . . . . o]
o ... .. O ‘&(k-l) 0 ...01}0
o L2 2R L ) o * e o e o G(k-l) 80 o e 0 . 89 O L BN O l
L (k-1)
1k (k-1) _ (x-1) (k-1)
Note that} . is the solution of hF 1/ x (k-1) _ (k-1 from
(k-1)
M1,k
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[ (1) ]
k-1
bl

which the kth Gram-Schmidt vector is obtainable. Note that . is

bﬁkil)
L uE
the solution of n(5™1) p(81) _ (k1) yor wrae ge z, 15 to be the
next vector activated, then to obtain solutions to h(k) b'4 (k) = v(k)

-1
and n'E) (k) _ (k) (k) _ (%)

operate on the above matrix with elementary (row) transformations so as

, and to obtain a , requires only to

to reduce the kth column to the unit vector Uy - This will produce
o, & (x)
k k k 1
by = o (5T and &y, T b (L
2 (k-1)2 (k-1)
Thus b, ¥~ =

k& / Py
From the last equation it is east to see that, to find the yecotr

k
for § = k, k+l,...,p.

yielding maximum b *2, one need only examine the ratios (gj(k'l) )/hjj(k-l)

Note finally that, after k vectors have been chosen, the last diagonal
element of the inverse of the augmented matrix would be 1/G(k). Hence
G(k) = e(k)e, the sum of squares of residual error.

Attention is called to the obvious fact that the step-up procedure of
activating estimation vectors in the order of the further reduction made
to sum of squares of error is not necessarily optimal in selecting say k
vectors out of p. E.g. the y vector could be practically in the the space

of two vectors, z

and Zss but lying closer to a third z., (not in the space)

than to either oflthe given two. Thus the first vector 2elected would be
vector Zge Then regardless of which one was selected next, the pair chosen
would be inferior to Zys Zpe
One other word of caution is in order. The criterion for activating
the next estimation vector is a maximum ratio. The denominator of this

ratio is the square of the length of the component of the new vector in
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the directlon orthogonal to the then current estimation space. Of course,
if some of the remaining vectors lie in the currently active estimation
space (i.e., they are linearly dependent on vectors already chosen)

they should not be considered as candidates. Because of roundoff errors
such dependency must be defined approximately. Note that an almost
dependent vector will produce a small orthogonal component which will tend
to produce a large criterion ratio (which may be primarily an accident

of roundoff error). To avoid spurious selections caused in this way the
criterion should be compared only for those vectors whose orthogonal
component exceeds a minimum value. What minimum value ought to be

chosen is at this time a matter for conjecture.

4. Criterion for eliminating insignificant variasbles. From the

discussion in the preceding section it evidently may happen that, in trying
to activate an efficient set of k estimation vectors, the step-up pro-
cedure will select at one stage a vector which later on would bé more
efficiently eliminated. So far no procedure for deactivating any of the
active estimation vectors has been incorporated. However, the algebraic
technique for eliminating any designated active estimation vector and
obtaining the regression analysis for the reduced set is well-known.

It is a question of deciding whether to eliminate one and if so which
one to eliminate. The purpose of this section is to provide a geometri-
cally appealing and obvious ansier to the second aspect of this question.
Criteria for deciding whether to eliminate a variable will be discussed
in the next section.

Therefore we suppose k estimation vectors have been activated and
the corresponding analysis laid out, say in the mamner of the sequence
of gaussian tableaux referred to in the last section, and we suppose the
decision has been made to eliminate one of the vectors. The question is:

Which one shall we eliminate? JFix éttentioh on one of the active Zs)
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(k)

say for definiteness the last one, 2y - Now the projection 9 of y

onto Vk can be resolved into its projection ﬁ(k-l) onto Vk-l’ the space
spanned by ZyseeerZy 9o and a component orthogonal to §(k-l). The pro=

Jjection §(k—l) of §(k) onto V. is indeed the same as the direct

k-1

projection of y onto V. _, so that the orthogonal component mentioned

k-1

above in the resolution of Q(k) is the net effect of the active vector

Zy in the estimation of y with §(k). Still keeping attention to 2305
we have already seen that the square of the length of this orthogonal
2

*

*
x where in fact b

k
of the kth Gram-Schmidt vector generated according to the order in which

component is b is a component in the direction

the z; were selected. Also,

2
%2 bﬁk)
S ¢ I
kk

where, it will be recalled,
p{3),(8) _ (9)

: T
for any j = 1,2,...,p; with h(J) = z(j) z(j), z(J) = (Zl""’zj)’
L(3) _ (9t

Recall also the pythagorean relation for each j = 1,2,...,D,

282, (D

(yoy) =v
where
2 3 2 2 N
§(J) =Z bi* and e(J) = X y'2 s
1=1 p=j+1 M
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with y' = Py, the image of y under orthogonal transformetion. Thus,
*
remembering that bi = yi,

2

2 2
- *
2 _ &(k 1), b+ ()

y

2
*
Evidently bk can be interpreted as the net reduction in the square

of the error vector obtained by activating Zys OT, equally as well,

as the net increment (provided by activating Zk) in the square of the

active estimate.

Imagine now that the gaussian elimination has proceeded to the point

of obtaining a solution to h(k) b(k) = g(k) with a(k) = h(k)-l:

(k) (1), (k) |.(x)
1 0 ...0 hl,k+1 ev e hlp bl all e |0 ... O 0
o . of: S PYLSON ERRN O B ¥
. : . j A B I : :
I (x) (W], (x) (x)
O ... O 1 hk,k+l e hkp bk .e akk 0 ... O 0
%)
0 . 0] ... gy | -e- 1 0...0 o0
: | - aE o . o]l:
) P
0O ... 0 ces g; ) e 0 ...01 0]
0 vee 0 ces G(k) cee 0O ... O 1

But now suppose j < k and the order in which zj and Zy

have been introduced
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is reversed. Imagine re-scheduling the calculations in the gaussian
elimination for this revision. In the tableaux this would be accomplished
if in the initial tableau the jth and kth rows were interchanged and the
jth and kth'columns (to restore the initial unit matrix on the right

the (p+1+j)-th and the (p+l+k)-th columns would also have to be inter-

changed), and thereafter repeating the operations which produced the

(k)

kth tableau laid out above. The solution vector b in this case would

be the same as before except that the order of bj(k) and bk(k) would be

interchanged. Moreover, the inverse matrix would be the same except

that the jth and kth rows and the jth and kth columns would be switched,

(k) () in the (j,Jj)-position.
ke o

2
(k) (k) * ;
Note now that b /ajj plays the role of bk , and hence the quantity
5 3
p (K (K)
J JJ

is the net reduction in the square of the error vector due

putting 255 in the (k,k)-position and a

to the’zj vector.

Now it is clear which of the k active estimation vectors should be

- . . . LD ¢

eliminated, viz. that z (j < k) for which bj(k) /ajj is minimum.
Observe that these ratios are computable from the kth gaussian tableau
set out above without any re-computations.

Having decided which estimation vector is to be eliminated from
the active set of k, the procedure for making the elimination and obtaining
the regression’analysis for the reduced set of k-1 active estimation
vectors is as follows. According to the foregoing remarks no generatlity
will be lost if we assume that the vector to be eliminated is z,. 3But

k

recall that to add z, to the active set, z_,... 217 and to obtain the

k 1

regression analysis for the augmented set it was only necessary to perform
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on the (k-1)-st tableau those elementary row transformations which reduce
the kth column to the unit vector U, . Therefore, to eliminate Zy it

is only necessary to undo these calculations. It is not hard to verify
that the reversing calculations are those elementary row transformation
(on the kth tableau) which reduce the kth column of the inverse a(k) back
to Uy -

It is of course only a notational convenience to assume that the
estimation vectors activated are the first k of the p listed in the
tableaux. The swapping of rows and columns, while tidying up the
written portrayal of the tableaux, etc., is completely unnecessary for
computer handling of the problem.

Finally we shall mention that the rule described above for deciding

which vector to eliminate is equivalent to that of eliminating the active

vector that has the smallest partial correlation with the dependent

variable vector. The partial correlation coefficient between Zy

(say) and ¥y 1s the cosine of the angle between e(k-l) and §(k)-§(k-l).

From the sketch below it is clear that this correlation decreases

gr(k) _

as the length || 9(k'1)|| = ]bzl decreases:

433



(k)

A(k) _ 5(k-1)

From the definition of cosine between e and y it is easy

to show that

2 2
* (k-1), (k)=

2 (k-1) alk)  a(k-1) Py (k-1 %2 G By
cOs e(e ), N -y ): (e—(k..l). e(k_l)) =G >bk = ———(—-)—-_a T

kk

5. Decision rules: the statistical model. In the last section

the question answered was which active estimation variable ought to be
eliminated once the decision had been made to eliminate one. The
question of constructing decision rules to tell when to eliminate a

‘ variable was left for this section. Defining a sweep or iteration as

a step in which either an inactive estimation vector is activated or

an active one is deactivated, an obvious type of decision rule is the
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following: Activate two vectors according to the step-up procedure, then
eliminate one by the method described in the preceding section, and
continue operating under this rule until some stopping rule (see below)
stops the entire procedure. It is conceivable that such a rule would
have utility if it is important in the uyltimate application to have no
more than k vectors while the cost of the extra sweeps is relatively
unimportant.

Of course if of k active estimation vectors one has a partial
correlation with the dependent variable vector of practically zZero,
it would seem wise to eliminate it. This suggests.another quite arbi-
trary type of elimination rule: Of the k currently active estimation
vectors eliminate the one of lowest partial correlation with y if said
partial correlation is less than some level a(k), possibly a function
of k.

Another decision problem must be dealt with, viz. that of constructing
a stopping rule to stop the step-up procedure (with or without modification
to allow for deletions). Here again, certain obvious but rather arbi-
trary rules come to mind. E.g., sﬁop when k vectors have been activated
(actually this was the somewhat naive rule used to motivate the section
on the step-up procedure). It seems clear that, by itself, this is not
& good rule, since in a particular example a satisfactory estimate may
be attainable with far fewer than k vectors (i.e. the multiple correlation
coefficient may be already very near one with fewer vectors or simply
may not be improved "significantly" to warrant the inclusion of more).

We take the position at the present time of recommending a fairly
comprehensive battery of stopping rules, any combination of which might
be used, with a variety of sensitivity settings possible. Intuition
suggests that appropriate settings will vary with the type of provlem,
the usage requirements and the burden of cost in time and money. Per-
haps a battery of stopping rules should at least make provision for

stopping when a fixed number of estimation vectors have been activated,
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when the estimate is of sufficiently high accuracy (multiple correlation
sufficiently near one), when the number of sweeps exceeds a certain
number (this acts as a safeguard against a cyclic pattern of activation
and elimination of vectors), and when the last r (say) vectors activ-
ated have not produced a "significant" change in the estimate.

Again the word, "significant", requires specific interpretation

before the rule can be operational. One modus operandi might be: Stop

the procedure if the increase in the multiple correlation coefficient
R, produced by adding the last r active estimation vectors, was less
than B(r,k).

Both in the question of whether to deactivate an active estimation
vector and in the question of when to stop activating estimation vectors
the notion of significant effect arises. This suggests the possibility
of resorting to a statistical model where the techniques of testing hy-
potheses might be invoked as a basis for decisions on whether to eliminate
a variable or whether to stop the activation process.

In the remainder of this section we shall sketch the outline of a
statistical model perhaps sufficiently to indicate the attractiveness of
such a decision mechanism as well as to indicate some of the limitations
of such‘a model.

Very briefly the model develops a statistic, or function of the
observed active estimation vectors and the dependent variable vector,
called an F statistic which is the decision-making instrument--large
F means significance of the effects being tested and small F means
nonsignificance. Under the hypothesis of the statistical model, and
under the additional hypothesis that the effects of the estimation
vectors being tested are only "noise" effects or effects introduced by
virtue of random fluctuations, the F statistic is expected to have a
value of about unity.

Actually, the F statistic is a ratio of the average of the effects
of the vectors being tested to the average of some random error effects.

In the terminology developed in previous sections suppose that
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Zpapt1? * "2 Py BTE active estimation vectors whose combined effect is

being tested. Recall that §(k) is the projection of y on the space

Al k=T
spanned by zl,...,zk; and that 9( ) is the projection of §(k) as
well as the projection of y onto the subspace spanned by Zysee sy e
y
T{T'_—_——__—__— /
~lk
| \ o(1)
e e(k-r) g
7z
by X
b)) /T\
\ // \
4
\\\ /\
In the F ratio the average of the effects of the r vectors Zk-r+l""’zk

is measured as % times the square of the length of the vector, §(k) - 9(k-r);

while the average of error components is measured as

k)(

1 .
- % times the

square of the so-called error vector, e( recall that e(k) lies in a

space of N-k dimensions orthogonal to the space gene:rated by Zq5
k Alk-r
2() _ p(kr)

ceesZy

in which lies). Obviously, values of the F statistic less

than one would not tend to support significant effects of z 4

k-r+1’° X’

while values greater than one presumably would. With the normal law of
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errors assumed in the statistical model and under the hypothesis that
these supposed effects of the last r vectors are noise effects, it turns
out that the chances are approximately even that F should exceed the

critical value of unity. If the critical value is increased the pro-

bability that the F statistic will exceed it diminishes rapidly. These
probabilities are tabulated for various critical values and various

degrees of freedom (r and N-k in our case). One may establish a decision

rule to reject the hypothesis of no systematic effect (from the estimation
vectors being tested) if the value of the F statistic observed is improb-
ably larger than one.

The decision rule is not complete until specific numbers or functions
are attached to the words "improbably larger.” Undoubtedly a judicious
choice depends on several factors involved in the balancing of cost and
return in a particular problem. This is one of the open questions we
have tried to study experimentally in another supporting study.

To complete the exposition some description of the characteristics
of the assumed statistical model is warranted, although as we have men-
tioned there are recent excellent accounts of this model.

In the statistical linear regression model it 1s assumed that,
except for random variations, Y is a linear function of the Zi' Thus

1Y
Yy =.Z Bi zin + SM, po=1,2,...,N,

where € are random errors. In addition it is usually assumed that the
W
. . 2
SM are uncorrelated with a common variance 0 and a mean of zero. The

Bi are parameters which may be estimated in an optimal way under the
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circumstances. In fact, the best linear unbiased estimate of a linear

p
combination of the Bi’ say N = & Bi Zi’ best in the sense of smallest
i=1
A
variance, is Y = ¥ bi Zi’ where the bi are precisely those which pro-
duce the least squares estimate. This is the Gauss-Markov theorem.
It implies that, if the true functional relationship is except for a
random error Y = T = & Bi Zi’ then, faced with not knowing the exact
values of the Bi’ the next best thing is to use the estimation function
A
Y=Y=2Xb, Z,.
i7i
To see the truth of this theorem we shall need to use the expected

value or mean value operator E operating on a random variable or

vector or matrix, with the expected value of a matrix of random variables
being the matrix of expected values. From this definition it follows
directly that E A X B = A(EX)B, if X is a random matrix and A and B are
nonrandom matrices.

Now under the statistical model above, y = zB + €, where yT =

(yl,...,yN), 7 = (zl,...,zp), z? = (zl ,...,zNi), BT = (Bl""’Bp)’

1 i
el = (tl,...,eN), with e (and hence y) being random vectors. According
to the assumptions, E€ = O so that Ey = zB; and the euare uncorrelated
with a common variance 02, so that EGST = 02 I, I being an identity
matrix. ©Note that the 25 vectors are nonrandom.

First we show that Eb = B, i.e., that the bi are unbiased estimates

of the corresponding Bi. In fact
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Eb = Eh g = b 1Eg g Ty = h'lzTEy =

T

0278 = nhup = 18 = B.

Next we exhibit the covariance matrix of the estimates b:

E(b - Eb) (b - Bb)T = E(b - B) (b - B)T =
g - mg)t

n'E(g - Eg) (g- Ee)T n7h,

E(h"lg - Eh_lg) (h™

since h and h-l are symmetric. Now

T T T T T \T
E(g - Fg) (g - Bg)” =E(zy - Bzy) (27y - Ez27y)” =

ZTE(Y - By) (y - Ey)TZ = ZTEeeTz = zTGEIz = oeh.

Hence, substituting above,

E(b - Fpb) (b - Eb)T = 0 6%t = il

N
Now consider Y = Zbi Zi = ZTb as an estimate of T = 2 Bi Zi = ZTB.
Observe that
A -
Y = ZTb = (ZTh lzT) y = aTy,
T T -1 T . . . . AR .
where a~ = Z2°h "z°. This is what is meant by saying that Y is a linear

estimate of T; i.e. it is a linear combination of the observed values of

the random dependent variable Y.

A
Also E? = EZTb = ZTEb = ZTB = TN. Hence Y is an unbiased estimate of 1.
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Finally we must show that the variance of Y is less than that of any
other linear unbiased estimate of T. Suppose4? to be another linear

+ ...+
191" ‘NN

Now consider vectors in euclidean N-space. Note that a = z(h-lZ), a

unbiassed estimate of 7, so that ¥ = ¢ :_cTy, and EcTy = 1.

vector lying in the estimation space spanned by the vectors z ,Z . We

1%
shall see that the vector a is the projection of c onto the space spanned
by TR Since EaTy = EcTy, then 0 = E(c-a)Ty = (c-a)TEy = (c-a)Tzs.

This identity can hold only if (c-a)Tz = 0. But this implies that
(c-a)Ta = (c—a)T z(h-lz) = 0.

Hence a and c-a are orthogonal, and the pythagorean relation, c2 = a2+ (c-a)g,

holds.

The variance of Y is

B - )% - 57 - ) (¥ - )T

E(cly EcTy) (cTy - EeTy)T
Ey) (y - By)Te = ¢ Bee'e

oocle = Gg{aTa + (e - a)T (c - a)} > 0% Ts.

cTE(y

But of course by the same reasoning the variance of Q is cgaTa. This
shows that ? is of minimum variance.

To arrive at the F-statistic test for our decision rule in eliminating
an estimation vector, or in stopping the activation of estimation vectors,
additional assumptions are needed. Suppose that k of the estimation vectors,
Zl""Zk has been activated, and it happens that Y = ; Bi Zi + e, in short

i=1
that the statistical model is valid with these k variables, so that
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k

y = I Bi z ., + eu or

() ()
" 2 ui y = B

+ €, when el - (el,...,eN). Suppose,

in addition to the conditions that Ee¢ = 0 and EeeT = 02I, we require that
the €H be normally distributed. Now suppose we wish to test the hypothesis

(HO) that the last r parameters @ ...,Bk are in fact all zero.

k-r+1’
(Accepting this hypothesis implies that the activation of the last r estima-
tion variables adds nothing to the estimate available with the first k-r
variables.)

The basic idea of such a test is to divide the sample space, i.e.

the space of possible values of the vector y, into a rejection region R

and its complement, an acceptance region, the ultimate decision rule

being to reject Ho in case the observed value of y falls in R. Naturally,
in order to make the test a discriminating or powerful one the points

in the rejection region ought to be chosen roughly so as to maximize the
probability of rejection when HO is not true, while at the same time the
probability of rejection when HO is true should be kept below a certain
bound. Such a test is approximately obtained by putting in R those points
with highest "trade-off ratio," this ratio being essentially the ratio

of the maximum of the probability density functions (pdf) over the entire
family of pdf's defined by the admissible values of the parameters, to

the maximum of the pdf's over the subfamily where the hypothesis HO holds.

This ratio is ¢alled the likelihood ratio A. Such points of highest

likelihood ratio are placed in R until the set is as large as it can be
and still have the desired bound or the probability of rejection when Ho

is true.
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The optimal character of the likelihood ratio test for the problem

at hand is given excellent treatment in SCHEFFE.

Let Q stand for the parameter space of admissible values of the

parameters. In our case

k
Let w stand for the subset of Q where Ho is true; i.e.

(x) =2 (k=-r) 2 3
= -0 < = = =
w= {B > @ I <P m’Bk-r+1 T Bk 0, o= > O}'
According to the hypothesis of the model the euare normally distributed,

uncorrelated (and hence independent) with common variance, 02 Thus

the joint pdf of the random vector y is (for a parameter point in Q)

MR

N 1
#ly; 8, o?) =TT (ero®) 2 exp {- —l-g- (y, -z 8

5
1%,1)
n=1 o M o4 TH

- (26D N2 o {_ _; (y - BN Ty . z(k)s(k))}.

Now to determine R it is necessary to maximize f over Q and over w,

form the ratio A, and select values of y for which this is highest.

sup T

R = {ylk(y) -2 > Xd},

where kd is a critical value chosen so that

Pr {yeRlHo is true }5 a3

here ¢ is called the significance or rejection level of the test.
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We recall row that a sum of squares of m normal indepdent random
variables with mean zero and variance one (N(O,l)) is said to be a Chi-

square variable with m degrees of freedom. The ratio of the average of

two such sums of squares of independent N(O,1) variables, with my terms

in the numerator and m, in the denominator, is called an I variable

with o, and m, degrees of freedom. The probability distribution of the

F variable is widely tabulated. The following result is the one pertinent
to our problem. For a statistical linear regression model, where the
errors are N(O,og) independently distributed, the rejection region R of
significance level «, provided by the likelihood ratio criterion for

rejecting Ho as described above, is given by

(k) alk-r 2 i

pe ) B2 e )

% /(o)

(o)

where F is the critical value in the F distribution for whicl
r,N-k (o) r,N-k
[ o
=k > = .
Pr IFr’N k > Fr,N—k o

The proof of this important theorem i1s obtained by constructing the
likelihood ratio A, in which the maximization problems are observed to
be essentially the least squares problem, then reducing the inequality
AMy) > Ka which defines the rejection set to the form given in the con-
clusion. Used in the proof are: The orthogonal transform of y based on

the Gram-Schmidt vectors zi,...,z and the fact that

t 1
k-r? Phere1? 02 Py
orthogonal transforms of normal vectors are normal. Although the proof

is available in numerous references, we sketch it here.
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Lemma 1, Iet y be a vector of N(mu, 02), independent, random variables, and

let y' = Py be an orthogonal transform of y. Then y' is a vector of N(mﬁ,c2),

N
independent, random variables, with m' = % puvmv’ where P = (puv). Procf:
u V=4

Write m = (ml,...,mN), and let G(&') be the distribution function of y'.

Then
o(g') = prly' < §°) = Prley < €1 = pr[{y[py < &'}
_ S (2ﬂ02)-N/28Xp{— (y - m)T (y-m)} .
{yIny 5'} 2o

Now, making the transformation y' = Py in the integal, the Jacobian of the
transformation is the determinant of the orthogonal matrix P, hence in
absolute value is one; the domain of integration is transformed into

-N/2

{y'ly' < §'} ; and the integrand becomes (2ﬂ02) exp- { —25— (y'- Pm)T (y' - Pm)}.
20

Hence
gl
N p
ae) =TTy @A™ e {- 1 (v - u)%} oy,
=1 ¥ e M M v

so that obviously the y& are N(m', 02), independent.

It is a corollary of lemma 1 that, if ¢ is a vector of N(O,cg),
independent variables and €' = Pe, P orthogonal, then €' is a vector of
N(O,Ge) independent variables.

Lemma 2, Iet y = z(k)B(k) + € be a statistical linear regression model.
let z*(k) be the matrix of orthonormal vectors generated from zl,...,zk by
the Gram-Schmidt process, so that z*(k) = z(k)Q(k) where Q(k) is upper

-1
triangular. Let B*(k) = Q(k) B(k)- Then By 14q = -

if g¥ = .., = B* = O,
Bk-r+l Bk 445

= Bk = 0 if and only



Proof: Suppose B cee = = 0; it follows from the equation

(x)-1

Bk
B*(k) - Q(k) = Q(k)'lg and the fact that Q

k-r+l
is upper triangular that

B¥ = 0, then B¥ . =0, etc., until B 0. The converse argument
kY k-1 gum

* =
k-r+l

is the same.

Proof of the main theorem: By Lemma 2

w ={B(k), 02| o < 5*<k'r) < o, Bﬁ-r+l = .. = Bi = 0, 02 > O},
and of course, since y = z(k)B(k) + ¢ and
9050 (0 (0 (0-1500 (0,00 (0600

How ) sup{f(y;B(k),Og)|(B(k),02)eﬂ}

y =
sup{ 2073556 | (81 ,0%) eu}
-N/2
where T = (2ﬂ02) exp {— —lg eTe 5
20

with ¢ =y - z*(k)B*(k). Clearly the extrenmizations in both cases can be

*
obtained by first minimizing eTe with respect to the Bi’ substituting these
back in, and maximizing the resulting expressions with respect to 02.

But minimizing €Te is precisely the LS problem encountered before.

Using (as before) the orthogonal transform, y' = Py and ¢' = Pe where the

(x)"
first k rows of P are z¥ R
T T 2 2 ¥
ee=¢'"e" = (yi—B?) + oo+ (yé - Bﬁ) + T y'.
pekt+l M
Obviously eTe over () is minimized when B¥ = y!, i = 1,...,k with the value
N (k)2 i i
T 2
of € ¢ reducing to . yd = e ; while eTe is minimized on w when
p=k+1
¥ = 1 i = - X
BY =yl 1= 1. 0 ker (recall that Bk-r

41 = -+ = B =0 in this case),

with the value of eTe reducing to
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N
eI

2
()
p=k~-r+l K

in this case.

Substituting these extreme values back in and maximizing the num

%rator
2 A e(k)
and denominator with respect to ¢, gives for the numerator ¢ = 5
2 2
. A _
and for the denominator re _ y(k) _ §(k r) + e(k)
- N

Replacing these in the expression for A(y) we get

() = JN/z . A(k) I\(k er 71\1/2

(k)2

Now 2 /2

N R N

e

=0
1]

AK) _ p(en)? 02 J 1) (k)
{Yl( -7 )r o

> = -

1

2
B /(o)

(9(1{) ) /y\_(k-r))E ) (k)“

Finally, since by yf and e
i=k-r+l1
since by Lemma 1 y' = Py, a vector of normal independent

common variance 02, and since under the hypothesis Ho Eyi =

then the ratio
k

'/o 2/r
G _Aknel 0 (yi/o)
2 N
) /() Z (y1/0)?/(w-k)
w=k+1

)\OJ

N

3 y'EJ
u=k+l K

variables with

0 (i=k-r+1,.

.o, k),

17



is a ratio of averages of sums of sjuares of N(0,1) independent random
variables when Ho is true. That is, the likelihood ratio is equivalent

to an F statistic when HO is true.
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SEILECTION OF SIGNIFICANT ESTIMATION VARIABLES
IN A LEAST SQUARES PROBLEM: EMPIRICAL COMPUTER STUDIES

The object of these studies was to investigate the usefulness of
the step-up procedure or modifications of it, in choosing a subset of
a large number of estimation variables which is good in a least squares
sense. In the first phase of these studies we wished to compare the
step-up procedure with the procedure of finding the best subset at
each stage. Because of the large number of matrix inversions required
in the last method we could handle only a very small number of terms.

The results of the first phase are summarized in the two examples
which follow. 1In the first run we note that the step-up procedure

gave two terms with R2 = 0.72h whereas the best two terms give R2 = 0.886.

Phase One - Run 1

In this run the dependent variable was

F(X X3) = 3/(1+xi+2x3) .

l} X2)

The polynomial model was a balanced polynomial linear in Xl’Xg’ and
i.e. + X X, . he 12
X3, i.e., alXl+a2X2+a3X3+aquX2+aSXlX3+a6X2X3 a7Xl o3 The 125

data points were in a rectanguler design with X, = .25(.25) 1.25, X, =

.25(.25) 1.25, and X, = .25(.25) 1.25. As will be noted in this run,

3

the function F is actually independent of X2 and hence the estimation

variables Z2,Z)+,Z6,Z7 should not enter the regression equation.
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Step-up Procedure Optimum Set

Estimation 5 Estimation 5

Variables R Variables R

> 569815 5 .569815
5,3 .72k129 3,1 .885715
5,351 .957606 3,1,5 . 957606
5,3,1,2 957615 3,2,1,5 957615
5,3,1,2,4 .957631 3,2,1,5,4 .957631
5,3,1,2,4,6 .957632 3,2,6,1,5,L .957632
5,3,1,2,4,6,7 .95763kL 3,2,6,1,5,4,7 .95763L4

Note that the step-up procedure did not select the optimum subset of

two variables.

Phase One - Run 2

In this run the dependent variable and the polynomial model were the

same as in Run 1. The 500 data points were in a rectangular design with

X1 = .25(.25)2.50, X2 = .25(.25) 2.50, and X3 = .25(.25) 1.25.

Step-up Procedure Optimal Set
Estimation ) Estimation 5
Variables R Variables R

1 . 702925 1 . 702925
1,3 .88L762 3,1 .88L762
1,3,5 .963786 3,1,5 .963786
1,3,5,2 .963789 3,2,1,5 .963789
1,3,5,2,6 .963791 3,2,6,1,5 .963791
1,3,5,2,6,4 .963791 3,2,6,1,5,4 .963791
1,3,5,2,6,4,7 963791 3,2,6,1,5,4,7 963791

In this case, the step-up procedure gave the optimal subset in each

case.
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Conclusions from Phase One

These runs indicated that some modification (e.g., a throw-out rule)
might be helpful in obtaining a regression equation which would be close
to the optimal. To investigate every possible regression equation even
- from a small set of terms is so time consuming that we did not use any

example with a large number of terms in this phase.

Phase Two
In this phase we used examples with a large number of terms. We
used various throw-out criteria to investigate the relative merits of

each. We did not find the optimal subsets.

Summary of Phase Two

In the first 12 runs in this phase we used a balanced polynomial

model to approximate the dependent variables

Fl(Xl,Xg,X3) = (X ¢V2+X

FE(Xl,Xg,X3) = exp(—X2X X.)
[ 2. 2 2
F3(X1,X2,X3) = (X1+X2+X3).

The results of these runs are tabulated below.

In the case of F3 = JX§+X§+X§, the 47-term polynomial fits very well

1

R2 = 0.962. The first [ terms obtained by the stepwise procedure are X1X2,

151

with R® = 0.999972. TIn fact the b terms X Xy XX, Xi, xg give a fit with



X2X and have R2 = 0.992. With a throw-out

2 3) } 3) 3}
criterion > 1.4k, however, we find that X.X X2X

172 1’ 2’ X3’
2 . . 2
X2 f£it with R = 0.996.

Now for the case F, = exp (-X§X2X3) we found that the 47-term

polynomial fit with R2 = 0.996. The first seven terms obtained by the

2 2
1 XXas X3, X 3, X3x%< X X X, and

X§X2X with R2 = 0.949.. With a throw out criterion > 0.8 we find that
2 3 2 2

12 X2X X X2X l 2 32 X2X2X3, and X1X§X3 are

a better seven and fit with R2 = 0.965.

step-up procedure were X

the seven terms X X X

With a throw-out criterion > 4.9 we find that the seven terms

2 2 3.2 2
X1s XX, x%% X X Xos X%(2X3, xlx§x3, x3x 2X3 fit with R = 0.962 and

X.X X xax Ky ¥ x2x2 x3x3x2 X2X2X3, and .

that the seven terms Xl’ 1%o%s

XiX2 fit with R2 = 0.978. We also find in fact that the first five

terms in the last fit have R2 = 0.962. Thus the five terms X

1’ X1X2X3’ -
2 34342
and X2X2X5 fit better than the seven terms given by the

X§X2X3’~ XX, and XX g y
step-up procedure with no throw-out criterion.

R

In case Fl = 77========== where the denominator has zeros in the
Xfxg 23

region of fitting we find that the fit is not quite as good. The b7
term polynomial gives R2 = 0.938. Again, however, we find that a seven-

term polynomial will do almost as well. The straight step-up procedure

. 3 3 %%,
gives the seven terms X1X3, Xl’ X 2, X2X2X3, X X2X and X2X3 which
£it with R° = 0.89%. With a throw-out criterion > 6.3 we find that the )
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2 2 2 2 .. . 2
seven terms X X2, X2X l > 3, X2 3 X1X§X3, and Xng fit with R~ =

0.902.

This example also gave rise to the situation where, while X3X

1315

the best single term, it is not one of the best two terms. The best two

iX3 are X3X and Xi which fit with R2 = 0.733. However,

the two terms Xi and Xg fit with R2 = 0.775. Another situation which

terms involving X

occurred on this example was that with a throw-out criterion of > k.9
we would arrive at a five-term polynomial with R2 = 0,876 whereas the
step-up procedure with no throw-out criterion leads to a five-term
polynomial with R2 = 0.884. Hence, having a throw-out criterion is not
always better.

As an example of a non-balanced design with an arbitrary linear

model we used a correlation matrix given in Anderson and Fruchter,

"Prediction Selection Method," Psychometrika, Vol. 25, No. 1. The

result s are tabulated in Run 17. Here we found that the throw-out
criterion was not used, and so the variables were selected by the step-
up procedure without this option. The overall fit using 14 variables
gave R2 = 0.270 and an F(14,295) = 7.8 which is significant at 0.005.
However, an F test of the hypothesis that the last 9 variables have

2

zero coefficients is not significant at even the 50% level. The R

for the first five terms of the step~up procedure is R2 = 0.259.

Phase Two - Run 1

In this run, the dependent variable was F(Xl’X2’X3) =

(xi+x§+x§) |X1+X2 0 3|'l/ 2. To fit this expression we used the polynomial
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model

3 3 2
z z z

£l=0 £2=O £3=O

L. 4. 4
a X 1X 2X 3.
£l£2£3 1 2 3
All the terms, including the dependent variable are first adjusted for
their means. Thus we wish to find subsets of the 47 terms in this
polynomial which give the best approximation to the dependent variable.

£ £ £3
The values of F(Xl’XE’X3) and X'llX2 2X3 were all calculated at 500

points in a balanced design. In this run we used the points Xl =

.25(.25) 2.50, X, = .25(.25) 2.50, and X. = .25(.25) 1.25.

3
The throw-out criterion for this run was FO = 1.5. A tabulation
df the terms as they were brought in follows. (Reduced RS is 1 - %5% (l-Rg)

where R2 is the square of the multiple correlation ccefficient and N = 500,

the number of observations, and m is the number of terms in the model.)

m

e | Reduced
Sweep in Model Term No Term F in F out R R

1 1 37 XiX3 1058 .680 .680

2 2 % X 98.96 733 733

3 3 S 99.3 T8 LTI

4 L 9 X3 103.15 816 .815

5 5 28 XXX, 292.59 B8 .88k

6 6 L3 X§X§X3 25.37 .890 .889

7 7 L XXy 19.01 .89k .893

8 8 1k xlx§ 26.76 .900  .898
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m

Perms Reduced
Sweep in Model Term No Term F in F out R2 R2
9 9 16 xlx2X3 15.58 .903 .901
10 8 2 X§ 0.21 .903 .901
2
11 9 17 X1X2X3 8.34 .904 .903
12 10 19 Xlxgx3 10.78 .906 .905
13 9 43 x%xgxs 0.11 .906 .905
14 8 37 XiX3 1.h7 .906 .905
15 9 1 X3 12.94 .909 .907
16 10 10 ng3 11.01 .911 .909
17 11 45 Xixg 15.92 .913 .912
18 12 5 X2X§ k.62 .916 .91h
19 13 38 X%X? 6.96 917 .915
20 14 2 x§ 6.66 .918 .916
21 13 1 X3 0.15 .918 .916
20 1 40 X%xzxs 6.69 .919 .917
23 13 28 X§X2X3 0.04 .919 .917
24 1L 43 x%xgx3 3.23 .920 .918
25 15 Lh Xixgxg 2.84 .920 .918
3
26 16 12 X, 3.93 .921 .918
27 17 11 xgxg 3.27 .921 .919
28 16 N ng3 0.02 .921 .919
29 17 o1 xlxg 1.62 .922 .919
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Run 2

data points were all the same as in Run 1.

In this run the dependent variable, the polynomial model and the

The throw-out criterion was

F. = 0.9. This run should tend to throw out terms less often than Run 1.

0

This should lead to fewer sweeps to reach k terms but perhaps the fit

for these terms will not be as good as in Run 1.

Sweep 13 is the identical with Run 1.

m

The tabulation through

Terms 5 Reduced
Sweep in Model Term No Term F in F out R R
3,2
13 9 43 X1X2X3 0.11 .906 .905
14 10 1 x3 11.46 .909 .907
15 9 37 x]3_x3 0.05 .909 .907
16 10 10 x§x3 11.01 .911 .909
Sweeps 16 through 29 are the same as Run 1
29 17 21 xlxg 1.62 .922 .919
3,3
30 16 45 X% 0.03 .922 .919
31 17 26 Xixi 1.34 .922 .919
32 18 2L Xi 3.09 .922 .920
33 19 13 X1X2 1.20 .923 .920
34 20 18 xlxg 2.86 .923 .920
35 19 21 xlxg 0.00 .923 .920
36 20 1 X, 1.01 .923 .920
37 19 11 ngg 0.59 .923 .920
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m

Terms 5 Reduced
Sweep in Model Term No Term F in F out R R®
38 20 37 xix3 1.k2 .923 .920
' 34342
39 21 by X1X2X3 1.53 .924 .920
Lo 22 45 xixg 2.13 .924 .921
L 23 7 X§X3 1.94 .92k .921
Lo 22 16 xlx2x3 0.31 .924 .921
3,2
43 23 23 X1X2X3 1.10 .924 .921
4y 24 11 ngg 1.22 .925 .921
45 25 25 X) 3 0.92 .925 .921

Run 3

In this run the dependent variable, the polynomial model and the data
points were all the same as in Run 1. The throw-out criterion for Run 3
was Fo = 8.0. This run should tend to throw out terms more often than
Run 1 or Run 2. This should lead to more sweeps to reach k terms but
hopefully the fit for these k terms will be better than in Run 1 or Run 2.
(Compare, however, Run 3, Sweep 7, with Run 1, Sweep 5 and also Run 3,
Sweep 18 with Run 1, Sweep 12). Note that in Run 3 we see that the best

term No. 37 is not one of the best two terms.

Teﬁms 5 Red%ced
Sweep in Model Term No  Term Fin Fout R R
1 1 37 X%X3 1058.24 .680 .680
2 2 % % 98.96 733 733
3 3 I & 9.3k 778 TTT
L 2 37 xix3 L4.88 775 775
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m

Reduced
Terms 5 5
Sweep in Model Term No Term F in F out R R
5 3 9 Xg 102.13 .81L .813 *
6 N 15 x1x2 219.83 871 .870
2.2 .
7 5 20 X1X2X3 18.48 .875 875
8 6 o6 xfxg 10.36 .885 .88l
2
9 7 17 XlX2X3 22.30 .890 .889
2.2
10 6 20 X1X2X3 5.12 .889 .888
11 7 5 X2X§ Lo .48 .897 .896
2
12 8 20 Xlxgx3 20.02 .901 .900
13 7 15 X X, 6.22 .900 .899
1k 8 1 xgxg 12.0k .903 .901 .
15 T 2 Xg 2.93 .902 .901
16 8 38 Xixg 26.81 .907 .906
17 9 18 Xlxg 22.83 .911 .910
3. .2
18 10 41 xlxgx3 8.20 .912 .011
Run 4

In this run the dependent variable, the polynomial model and the

data points were all the same as in Run 1. The throw-out criterion was

FO = 10_3. This run should not throw out variables very often, at least

not until they are very insignificant. A partial tabulation of this

run follows.
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m

Perms , Reduged
Sweep in Model  Term No Temm F in F out R R
1 1 37 XiX3 1058.00 .680 .680

2 2 6 % 98.96 133733

3 3 2 X 9.3k 778 TTT

4 ! 9 X 103.15 .816 815

5 5 28 X§X2X3 292.59 .88L4 .88L

6 6 43 x§x§x3 25.37 .890 .889
7 7 N X X, 19.01 .89k4 .893

8 8 1k xlxg 26.76 .900 .898

9 9 16 X1X2X3 15.58 .903 .901
10 10 41 xix2x§ 10.40 .905 .903
11 11 45 Xng 11.46 .907 .905
12 12 21 Xlxg 23.71 .911 .909
13 13 46 xixgx3 6.60 .913 .910
14 12 9 xg 0.00 .913 911
15 13 1 Xg 3.93 913 911
16 1k 10 xgx3 3.10 .91k .911
20 16 2 x§ 0.00 .916 .91k
25 21 25 xix3 3.67 +920 017
30 22 ok xi 0.00 .923 .920
35 27 39 Xixg 535 927 .923
4o 30 9 xg 0.00 92828  .92385
45 31 20 xlx§x§ 0.53 .92866 .92410
50 34 34 xixgx3 15.23 .93196 .92714
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m

Terms Reduced
Sweep in Model  Term No Term Fin F out R R°
55 37 6 Xg 0.00 .93459 .92950
60 Lo Lo Xixg 0.4k .93682 .931L46
65 L5 18 xlxg 0.55 .93730 .93124
66 46 9 Xg 1.04 L9375 .93125
67 e 30 xixg 5.08 .9381k2  ,931860

Run 5

In this run, the dependent variable was F(Xl,Xg,X3) = exp (-x§x2x3).
We used the same balanced polynomial model as in the first four runs, cubic

in X. and X2, quadratic in X The 500 data points were in the same

1

balanced design, X

3

] = .25(.25) 2.50, X, = .25(.25) 2.50, X, = .25(.25) 1.25.

3
The polynomial model in this case should fit better than in the first
four runs.

The throw-out criterion in the first runs in this series was FO = 1.5.

m

Terms , Reduged
Sweep in Model Term No. Term F in F out R R

1 1 12 X, 836.43 .627 627

2 2 L XXy 529.77 .819 .819

3 3 24 xi 212.65 874 .873

L L 8 xgxg 308.40 .922 .922

5 5 Ly xixgxg 61.94 .931 .930

6 6 16 X1X2X3 103.35 943 .9k2

7 7 28 X§X2X3 62.76 .9k9 .9L9

8 8 20 xlxgxg 231.18 .965 .965
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m Reduced

Sweep i§e§§§e1 Term No _Term F in  F out R g2
9 7 12 Xy 0.79 . 965 .965
10 8 23 xlxgxg 27.03 .967 .967
11 9 22 xlxgx3 138.53 .97k 97k
12 10 21 xlxg 411.57 .986 .986
13 11 27 xfx2 8.79 .986 .986
14 12 25 xfx3 97.48 .989 .988
15 13 30 xixg 67.45 .990 .990
16 1k 38 Xixg 73.37 .991 .991
17 13 2k xi 0.03 .991 .991
18 14 33 xfxg 32.08 .992 .992
19 15 39 xix2 23.02 .992 .992
20 16 32 XX 75.8h .993 993
25 17 Lo xixg 33.90 .99431 .99412
26 18 35 xfxgxg 14.09 .99Lkg .99428
o7 17 23 xlxgxg 1.20 .oll6  .99kot
28 18 8 xgxg 11.81 .99459 -9944o
29 19 1k xlxg 18.00 .99kT79 .99459
30 20 L5 Xixg 5.57 .99485 .9oL6L
35 25 21 XX 11.63 199594 99573
4o 26 21 xlxg 1.12 .99604 .99583
b 26 21 XX 0.93 .99606 .99585
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Fun 6

This run used the same dependent variable, polynomial model and data
points as in Run 5. The throw-out criterion was FO = 0.9. This will tend
to throw out terms less often than in Run 5. In fact, however, the runs
are identical through Sweep 26.

m

Terms , Redu;ed
Sweep  in Model  Term No _Term Fin F out R R
25 17 Lo xixg 33.90 .99431  .99k12
26 18 35 XX 1409 .07 .99k28
27 19 11 ngg 13.66 L9962 .99ko2
28 18 20 Xlxgxi 0.00 .99L62 .99443
29 19 14 X, % 16.67 99480 .99u61
30 20 45 Ox3 6.19 99487 .99M6T
35 23 L2 xixg 0. Lk L9957k .99555
Lo 26 11 xgxg 0.48 .99609 .99588
41 25 38 Xixg 0.59 .99608 .99589
Lo 2l 14 X1X§ 0.61 .99608 .99589
L3 25 31 X§X§X3 0.79 .99608 .99589

Run 7

In this run the dependent variable, the polynomial model and the
data points were all the same as in Run 5. The throw-out criterion was
FO = 8.0. The variables brought in were the same as in Run 5 through

Sweep 7.
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m
Terms Reduced

Sweep  in Model  Term No  Tem F in  F out R° R
7 7 28 Xixex3 62.76 .9Lo25 .9L863
8 6 2L Xi hoh1 .94879 .9L827
9 5 i Xixgxg 4,83 .9L829 .oL787

10 6 20 %g§§ 69.96 .95471 .95425

11 7 L7 Xixgxg 100.42 .96239 .96193

12 6 L XXy 1.81 .96225 .96187

13 5 I 1.07  .96217  .96186

14 6 31 X§X§X3 63.95 .96651 .96617

15 7 27 X§X2 269.22 .97836 .97809

16 8 23 X, 10K 123.13 98270 .982L5

17 9 L XX, 73.73 .98496 .98LT1

18 10 25 X§X3 72.64 .98690 .98666

19 11 26 xixg 50.82 .98814  .98790

20 12 36 Xi 52.25 .98929 98905

21 13 L Xixgxg 46.61 .99023 .98999

22 14 30 XiXS 47.15 .99109 .99085

23 15 33 XiXS 78.01 .99233 .99211

2 14 S Xixgxg 0.88 .99232 .99211

25 13 12 Xy 3.00 .99227 99208

26 1h 8 ngg 55.18 .99306 .99287

27 15 22 xlxgx3 6.18 L9931k 99295
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Run 8

In this run the dependent variable, the polyncmial model and the data

points were all the same 2s in Run 5. The throv-out criterion was F, = 1073,
The variables brought in were the same as in Run 5 through Sweep 8.
m

Sweep i£e§2§e1 Term No  Term F in  F out R° Red;;ed
8 8 20 X1X2X§ 251.18 .96550 .96501
9 9 23 Xlxgxg 26,72 .96728 . 96675
10 10 22 xlxgx3 137.60 .97hh7 97400
11 11 21 xlxg 416.70 .98623 .98595
12 12 36 Xi 32.83 .98710 .08681
13 13 40 x§x2X3 50.05 .98830  .98801
1k 1k 15 XX, 9.58 .98853 .98822
15 15 13 X)X 148.72 .99122 .99097
20 20 6 xg 20.37 .99481 L9961
25 25 33 Xixg 10.32 .95537 9951k
30 30 7 ng3 k.12 .99576 .99550
35 35 00 X% 3.22 199619 99591
Lo 38 17 xlxexg 5.45 .99630 .99601
L5 b3 38 xixg 2.68 .99638 .99605
50 Ly 8 xgxi 0.87 .99640 .99606
5k L6 32 xixgxg 0.18 .996399  .9960k2
55 L L6 xixgx3 2.21 .996L416  .996052
56 L6 12 X, 0.00 .996416 996061
57 L7 12 X, 0.00 .996416  .996052
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Run 9

In this run the dependent variable was F(Xl’XQ’X3) =y X§+X§+X§.

The 47-term balanced polynomial, cubic in Xl and Xe‘and quadratic in X3,
was used as the model to fit the dependent variable over the 500 data points

X, = .25(.25) 2.50, X

1 = .25(.25) 2.50, and X

5 3 = .25(.25) 1.25.

As expected in this case, the fit is very good. Because of the symmetry

involved the terms in Xl and X2 should be the same, at least in the com-

plete model. The lack of symmetry in the way these terms were brought is

interesting.
The throw-out criterion for this run was FO = 1.5.
m
Sweep ige;§§e1 Term No Term F in F out R2 Redz;ed
1 1 15 XX, 1337.01 . 72861 . 72861
2 2 L XX, 98.19 77338 77293
3 3 2k Xi 309.02 .86037 .85981
L L 6 Xg 132L.25 .96201 .96178
5 5 7 x§x3 302.54 .976kLL .97625
6 6 12 X, 553.58 .98890 .98879
7 7 2 ‘xg 202.1k .99213 .9920k
8 8 3 X, ka7.10 -99579 .99573
9 9 L X2X3 1.44 -99578 -99573
10 8 1k xlx§ 469.05 .9978L .99781
11 9 19 Xlxgx3 169.84 .99840 .99837
12 10 5 x2x§ 177.58 .99882
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m
Reduced

Terms 5 5
Sweep in Model Term No Term Fin F out R R
13 11 9 Xg 1hk, 20 .99909
1h 12 36 xi 20k, 27 .99936
2
15 13 17 X X X3 171.96 99953
16 14 21 Xng 87.04 .99960
17 15 39 Xix2 59.18 .9996)4
18 16 30 xixg 125.68 .99972
19 17 1 X3 55.81 -99975
20 18 ly X2X3 11k.22 . 99980
25 23 16 X2X1X3 107.82 .9999L
30 26 38 Xixi 40 .36 .99996
2.2
35 27 20 x1x2x3 0.09 .99996
Lo 30 21 Xlxg 0.00 .99996
b5 35 ks xJx3 9.43 -999969
46 3L 39 X§X2 0.26 .999969
L7 35 21 XX 3.23 .999969
3. .2
L8 36 41 Xlx2x3 0.ko .999969

Run 10

In this run the dependent variable, the polynomial model and the
data points were the same as in Run 9. The throw-out criterion for this
run was FO = 0.9. The tabulation of the results is identical with Run

9 through Sweep 8.
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m
Reduced

‘Terms 5 5

Sweep in Model Term No Term F in F out R R
8 8 3 X, 427.10 .99579
9 9 1k xlxg' 470.79 .997854
10 10 16 X1X2X3 174.96 .998420
11 11 1 Xs 212.37 .998899
12 12 9 Xz 156.79 .999167
13 13 36 Xi 230.76 .999435
1k 14 13 X1X3 279.6k .999642
15 15 L5 xixg 8a.k2 . 999694
16 16 35 xixgxg 52,71 .99972k
17 17 37 xix3 107.8k .9997T7k
18 18 21 X% §7.97 999795
19 19 39 XX, 259.26 999867
20 20 31 xixgx3 202.22 .999906
25 25 23 XK 76.83 999950
30 28 29 XX 3.3 999957
Lo 30 45 Xixg 6.72 .999960
50 32 29 XiXQXg L.50 999963
60 36 L1 Xixgxg 10.53 .999967
65 37 32 Xixgxg 0.86 .999968

Run 11
In this run the dependent variable, the polynomial model and the data
points were the same as in Run 9. The throw-out criterion was FO = 8.0.

The variables were included in the same order as in Run 9 through Sweep 15.

Let



m

Terms 5 5
Sweep in Model Term No Term F in F out R~ = Reduced R
‘ 2
15 13 17 X1X2X3 171.96 .999528
16 12 7 X, 3 2.77 . 999525
17 13 39 X, 49.15 999569
18 1k 1 X3 37.69 .999600
2
19 13 19 xlX2x3 2.18 .999598
20 1h 21 xlxg 59.03 .999642
21 15 30 Xixg 142,48 .999723
22 16 13 xlx3 52.63 .999750
23 17 L X2X3 58.95 .999778
24 18 16 X1X2X3 60.90 .999803
2
25 17 17 X1X2X3 0.20 .999802
26 18 16 xgx3 61.82 .999825
3
o7 19 22 X1X2X3 177.78 .999872
28 20 37 xix3 102.41 .999895
3
29 21 Lo XXXy 390.39 .9999k2
3,3
30 22 L6 xlx2x3 38.26 .999946
35 25 £3 X3X, 10.63 1999957
36 24 14 xlxg 2.26 .999957
3,3,2
37 25 L7 xlx2x3 T.35 999958

Run 12

In this run the dependent variable, the polynomial model, and the
data points were the same as in Run 9. The throw-out criterion was FO = 10-3.
The variables came in the same order as in Run 10 through Sweep 28.

No throw-outs were made.
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m
Terms

Sweep in Model Term No Term F in F out R° = Reduced R
25 25 23 Xlxgx§ 76.83 999950

30 30 L2 xixg 6.11 .999958

35 35 43 XK, 15.9 999962

ko Lo 28 XiX2X3 21.80 . 999967

45 45 25 XXy 28.42 .999971

46 L6 34 xix%xB 11.16 .999972

47 W7 47 xixgxg 1.10 -999972

Run 13

In this run the dependent variable was F(Xl,Xg,X3) = exp (-X§X2X3)
as in Run 9. The polynomial model was the same L47-term balanced polynomial
cubic in Xl and X2, quadratic in X
tangular design X

3’ There were 1000 data points in @ rec-
= .25(.25) 2.50, X

= .25(.25) 2.50, X, = .25(.25) 2.50.

1 2 3
On this run the throw-out criterion was FO = 1.0.
m
Terms 5
Sweep in Model Term No Term F in F out R
1 1 12 X, 1277.16 .561
2 2 L x2x3 619.57 .729
3 3 oL xi 582.22 .829
4 4 8 xgxg 72,27 .88}
2
5 28 xlx2x3 267.53 .0088
3 6 16 X, X Xo 69.37 L9147
3
7 T 4o X1X2X3 225,79 .9305
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m

Terms
Sweep in Model Term No Term F in
8 8 36 % 27.10
9 9 11 ngg 27.63
10 10 10 xgx3 151.95
11 11 9 Xg 234.89
12 12 13 X1X3 23.34
13 13 15 XX, 141,45
1k 1 4k XK 8ls. 2l
15 15 20 Xlxgxg 0257.55
16 16 14 xlxg 130.45
17 15 12 X,
18 16 18 xlxg 307.20
19 17 21 xlxg 113.99
20 16 i X2X3
21 17 32 xixgxg 20.32
20 16 I xixgxg
23 17 12 X, 31.96
2l 18 L X Xq 53.90
25 17 9 xg
30 22 19 Xlxgx3 8.60
35 25 ik XXX 6.49
36 26 22 Xlxgx3 3.53
37 27 1 X3 2.05

L70

F out

R2

0.01

0.53

0.75

.9324
L9342
.9430
.9539
9550
.9606
.9637
-9713
L9Th6
L9Th6
.980673
.982683
.98267h
.983025
.983023
.983658
.984L15
.984403
.986977
.988926
.988966
.988989



Run 1k

In this run the dependent variable, the polynomial model and the data
points were the same as in Run 13. The throw-out criterion was Fo = 10-3.

The tabulation is identical with Run 13 through Sweep 16.

m

Sweep i§e§§§el Term No Term F in F out R°

16 16 1k X1X§ 130.45 .76
17 17 18 Xlxg 318.07 98084
18 18 32 xixgxg 14k, 76 .98330
19 19 21 xlxg 155.92 .98560
20 20 b7 Xngxg 16.89 .98584
21 21 3k XngX3 53.87 .98658
22 22 19 xlx§x3 4.65 .08664
23 23 17 X1X2X§ 25.46 .98698
2k 2k 33 Xfxg 89.60 .98808
25 25 23 xlxgxg 15.91 .98827
30 30 2 xg 10.28 .98926
35 35 38 XX k.23 98950
Lo 36 e2 X1X2X3 0.91 .989603
45 37 Lo Xixgx3 0.00 .989686
50 Lo 26 xixg 2.43 .989835
55 39 21 Xlxg 0.00 .989862
60 Lo ? k.51 . 990066
65 L5 ? 0.05 . 990040
66 46 ? 0.00 .990040
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Run 15

Experiment Station, Auburn University, Auburn, Alabama.

In this run, the data were taken from Bulletin 336, Agricultural

The throw out was F, = 1073
m
Terms

Sweep in Model Term No Term
1 1 L Xh
2 2 2 X2
2
3 3 5 Xu
L b X
3 3

5 5 6 XX,
6 6 1 x1

Run 16

was taken to be a balanced polynomial linear in X

but was never used.

F in R
86.98 696
3.1k 720
0.64 .725
0.24 726
0.13 .728
0.58 .732

Reduced

R2

696
712
.710
.70k
.696
693

This run used the same data as in Run 15, but the polynomial model

l)

X2, and X

3

and quad-

ratic in Xh' This gives 23 terms in addition to the constant term.

Te?ms ) Redu;ed

Sweep in Model Term No Term F in  F out R R
1 1 1 X), 86.98 .69596 .69596
2 2 5 X3Xi 3.38 .721k2 71409
3 3 3 X3 0.41 .72453 L7096k
L L 7 XX, 1.13 .7331h .71091
5 5 1k xlxi 1.71 .T590 .71686
6 6 12 X, 5.75 .78361 L75179
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m

Terms . Redu;ed
Sweep in Model Term No  Term Fin F out R R
7 7 9 x2x3 0.55 78724 .Th856
8 8 16 X1X3Xh 2.55 80340 . 76040
9 9 2 xi 1.51 81280 .T6k4k9
10 10 23 xlx2x3xi 3.49 83293  .78281
11 11 L X3Xh 0.34 83451 LTTT798
12 12 6 X, 0.98 840665  .T7T78069
13 13 17 xlx3x§ 0.7k 845059  .776197
14 14 13 XX, 2.02 856626  .784939
15 13 23 X1x2X3xi 0.00 856624  .792901
16 14 8 xgxi 0.64 860176  .790265
17 15 15 X, X, 0.27 861736  .784308
18 16 21 X1X2X3 0.10 862309 776253
19 17 10 XXX, 0.35 86L4L8  .770151
20 16 12 X 0.00 864416 779725
21 17 18 XX, 0.50 867h72 775279
22 .18 23 xlx2x3xi 0.89 872836 TTh572
23 17 21 X XXy 0.00 872835  .78L4373
2k 18 19 X, XX), 0.61 876437 .780957
25 17 3 x3 0.00 876435  .790LkT76
26 18 11 X2X3Xi 0.61 879902  .787099
27 19 12 X 0.12 880637  .778325
28 20 22 X\ XXX, 0.19 .881802  .769515
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m

Terms , Redu;ed
Sweep in Model Term No Term in F out R R
29 21 3 X, .20 .883701  .761282
30 20 19 X X X), 0.00 .883697  .773210
31 21 20 Xlxzxi .13 .884550  .760023
32 22 21 X X Xq .06 .884958  .7507k43
33 23 19 X X X), .01 .885035  .736256
34 22 18 X, X, 0.00 .885034  .750906
35 23 18 XX, .00 .885035  .736256
Run 17

In this run the data were a correlation matrix taken from Anderson,

H. E., and Fruchter, B., "Predictor Selection Methods," Psychometrika,

Vol. 25, No. 1, March 1960. 1In this run the throw-out criterion of F, = 10
was never used.
Teims . Reduged
Sweep in Model Term No F in R R
1 1 6 56 .94 .156025 .156025
2 2 N 21.38 . 210965 . 208403
3 3 3 10.18 .236372 .231397
L L 13 4.90 .2h8u451 .241083
5 5 12 4,13 . 258529 . 248805
6 6 10 1.38 .261881 L2ho7h
7 7 1 0.92 .264125 .249553
8 8 8 0.71 . 265861 . 24884,

7l
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Terms . Reduged

Swee in Model Term No _F in _RT __ R
9 9 2 0.k42 . 266898 .2h7ha3
10 10 5 0.37 . 267803 . 245837
11 11 9 0.40 . 268785 .2kL330
12 12 7 0.29 . 269503 .2h2538
13 13 11 0.17 .269932 .2hok35
1k 1k 1k 0.02. . 269970 .237908

Conclusions

We feel that the step-up procedure is an effective tool in the problem
of finding a regression equation with a small number of estimation variables
from a model with a large number. Using the various throw-out criteria and
stopping rules, the problems of interest could be explored. The throw-out
criterion and stopping rule which best fit the problem could be selected and
then a regression equation determined. We feel that most future investigation
of this procedure should be problem-oriented. We need the data for a problem

to help develop an effective way of handling the data.
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SELECTION OF SIGNIFICANT ESTIMATION VARIABLES
IN A LEAST SQUARES PROBLEM: COMPUTER PROGRAMS

1. Comparison of variables selected by step-up procedure with

optimal set. This procedure was programmed in the AIGOL 58 compiler
ianguage for the Burroughs 220 computer. Because of limitations on
the memory the procedure is restircted to 25 variables.

The purpose of the program is to determine whether or not the
step-up procedure actually selects the best k estimation wvariables.
This program was preliminary to a more elaborate program for the Bur-
roughs 5000.

First, the data are generated. The estimation variables Zl,...,Zn_1
are terms of a balanced polynomial in independent variables
Xl""’Xn’ i.e.,

£ £

1 ™ .
ZK=X1 "'X'n B Zi=0,...,Li, i=1,2, ...,m,

where (Ll,...,Ln) takes on all possible values in the given range except
(0yees,0). Certain terms of the balanced polynomial are to be used to
estimate a dependent variable, which is some function of the X's. It is
convenient to label this variable Zn' Corresponding to an index,

ti=l,2,...,Ti,i=l,2,...,n, the observed value of Xi is x Thus,

ity
corresponding to the set {(tl,...,tn)|ti=l,2,...,Ti,i=l,2,...,n} is a

rectangular set of data-points {(xlt ’.'.’Xﬂt%} from which are calculated
1

observed values, (Zul""’ I_m), of the vector consisting of the

z ,Z
M,n-1
estimation variables and the dependent variable.

Next, regression analyses are made using all possible combinations
of k estimation variables, where k=2,...,n-2. For each k, the combinations
of variables which give maximum and minimum sums of squares due to re-
gression (and hence maximum and minimum multiple correlation) are printed

along with the sums of squares.
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Finally, the step-up procedure is used. At the k'th step, the
variable is selected from those not already included which maximizes
S(k'3§//é(k,) The procedure then uses that variable as the pivot

kn kk P Zys p

variable. It makes the following calculations:

(k'+1) skj(k')

53 SL ED J

1,2,...n

k'+1 . s
Sij( ) = 13 S &) i=1,...k-1,k+1,...n,j=1,2,...n.

In these calculations <Sij) is the augmented matrix of dot products of
the estimation vectors and the dependent-variable vector. The superscript
k' indicates the number of transformations on (Sij) in which a column has
been reduced to a unit vector. The list of variables, included in the
regression, and the sum of squares due to regression are printed.

In some cases the stepwise procedure gave optimal solutions, while
in others it did not. In an attempt to run the program with 18 variables
the time required to calculate the regression analyses for all combina-

tions of variables turned out to be prohibitive.

Operating Instructions for B-220 Program

1. Load the program, with the proper procedure (FCN) inserted to
calculate the independent polynomial variables and the dependent variables.
2. Load the following data card, using more than one card if nec-

essary, with 5 punched in the first column of each card.
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Card Contents Card Format

a) Number of independent polynomial Skip at least one column; punch
variables integer

b) Number of observations of Skip at least one column; punch
independent polynomial variable integer

¢) Repeat (b) for each variable

d) Order in independent polynomial Skip at least one column; punch
variable integer

e) Repeat (d) for each variable

f) Lower bound for diagonal element Skip at least one column; punch
floating point number

g) Lower bound for difference be- Skip at least one column; punch
tween 1.0 and off-diagonal cor- floating point number
relation

h) F-statistic for stopping Skip'at least one column; punch

floating point number; leave rest
of card blank.

3. Repeat (2) for each analysis to be made.

k. Load 2 blank cards.

2. Comprehensive program for selection of variables with step-up

procedure incorporating elimination rules and stopping rules. This

procedure attempts to select the most significant estimation variables
for a least squares fitting. It has been programmed for the Burroughs
5000 computer in the ALGOL 60 compiler language.

There are three options for obtaining the n x n augmented (Sij)
matrix

(1) Either the <Sij) matrix or the correlation matrix may be read
in. (Only the diagonal and lower triangle are read in.)

(2) Each of the M observations (Zul""’zun) may be read in. An

estimate (ml,...,mn) of the means is available. As the data are read
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in, the sums

M
8, =32 (Z 1-ml)
p=1 "
' M
Sij =u?1 (Zpi-mi) (Zuj-mj) i=1,2,s0un, J=1,2,...,1

S..=8,, - —3 1= 1,200, = 1,2,...,1i

is then computed.
(3) Each observation may be generated from balanced polynomials.
A set of fixed data points (Xpl""xpﬂ) is given. The estimation

variables are the terms of a balanced poljnomial, so that

where Li = O,l,...,Li, i=1,2,...m. Each of these combinations of
exponents (except all exponents zero) corresponds to one estimation
variable. The values :><u:|_,...,xm_r may be read in, or they may be part
of a rectangular design, with each p corresponding to some value of
the index (tl""’tﬁ)’ where t, = 1,...,T,, i = 1,2,...,m. Values

ZunOf the dependent variable may be read in or they may be computed
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values of a specified function, corresponding to values Xul""’xun'

ceeyX 2 are generated in a procedure which may

These vectors xul’ T un

be varied with each run. As the observations z ""Zun are generated,

pl’
the sum of squares matrix (Sij) is calculated as above.

Once the adjusted sum of squares matrix has been obtained it may
be used for more than one analysis. The diagonal and lower triangle
only are used in the analysis. Since the matrix is symmetric, the
necessary values may be stored in the upper triangle (with the diagonal
in a separate vector) for perfofming other analyses under different
conditions.

If the correlation matrix was read in, it is used in the regression
analysis; otherwise, there is the option of computing and using the
correlation matrix. The matrix to be used shall be denoted as <§ij(or>'
The program includes the option of printing this matrix.

In a hand computation the system of normal equations would be solved
for regression coefficients in a sequence of gaussian eliminations, and
the inverse matrix would be built up on a unit matrix. The initial
tableau.(ﬁij(oz> for such an elimination and matrix inversion procedure

would be defined by
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R4

0 R .
r Sij( ) i=1212,...n; J
sji(o) i= 1,2,...n-1;
(o) _
ij )

1 i=1,2,...n; j
0 i=12,...n; j

.

The original S matrix is of the form

(0)

21 Spp
Sn-l,l(O)Sn-l,E(O)"'Sn—l,n-L(O)

0 0 0 0
g l( ) Snz( ) "fsn,n-l( ) Snn( )

while the original R matrix is of the form

= 1,2,...,1

Jd=1i+l,...,n

= n+l

= n+l,...,2n, § # n+i
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11 21 n_l’l nl
(0) (0) (0) (0)
So1 oo =+ Sy S0 0 1 ... O
(0) (0) (0) (0)
8p-1,1  Sno1,2 e Sppa Spne1 O 0 ...1 0
s (0 4 (0) s © ¢ (© & o .o 1
nl n2 n,n-1 nn

Because of symmetry operations need to be made only on the lower tri-

angle of the S matrix. Hence the entire R matrix need not be stored in
memory .
The stepwise procedure now begins. It is assumed that at the k'th

step, k estimation variables Zp yeeesh are included in the regression,
1 k
while the n-k-1 variables Z ,...,Z are excluded. The variables
4 9n-x-1

1 2 1
z and Z which minimize (S (k") )/s (k') and maximize
max min npi pipi

CORYARNED
ng . .q.
qJ quJ
Z shall be considered significant if
Prin

(s , respectively, are determined. The variable.
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1 1
(S(k ) )2 /S(k )
npmin PrinPmi
min“min >
k! =
- Sgﬁ )/(M-k-l) 0
and the variable Z shall be considered significant if
>
1 1
(stE") 2 slE)
Lax nax max > F
1 1 1
s - (B sl g nk-2) :
Ynax qmaxqmax
where FI and FO are criteria based on the F-distribution. FI should not
be less than FO; if it were, looping might occur.
) The procedure now tests whether Zp is to be dropped from the
min
regression. There are two options for dropping a variable:
‘ (1) 1r2 is not significant, it is dropped. (This may be

min
bypassed by setting F, equal to zero.)
(2 mn,
\=/

The procedure alternately adds two variables and drops one.

is not to be dropped, the procedure checks whether
nin
to stop or not.

There are four criteria for stopping, the first two of which are now

checked.

(1) r1f Zp is not significant, it is added and then the procedure
max

terminates. (This may be bypassed by setting F_ to zero.)

I
(2) When a specified maximum number of terms have been included in
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the regression, the procedure terminates. Unless otherwise
specified, this will be the number of estimation variables.
(3) If the square of the multiple correlation coefficient is

greater than a specified amount Rzma , the procedure ter-

X
minates. (This may be bypassed by setting R2max to 1.)

(4) When the procedure has gone through a specified number of
iterations, it terminates. If the procedure is following
the option of adding two variables and dropping one, this
will be three times the maximum number of terms; otherwise,
it will be twice the maximum number of terms.

If Zp,_ is not to be dropped, and if the procedure does not stop,
min

Z is now added to the regression.

max

The jth column of the S matrix corresponds to the (j+n)-th of the

R matrix if the Jjth variable has been included in the regression and

to the jth column otherwise. (At all stages, either the jth column or
the (j+n)-th column of the R matrix will be a unit vector. The S matrix
will contain the column which is not. Of course the storage of the unit
vector is unnecessary.)

It will be assumed that the gth variable is to be added or dropped.

(The computational procedure is the same in both cases. It will also
be assumed that Hj(k') = =1 if the Jj-th variable is included in the

(k')

regression after k' iterations and that Hj = + 1 otherwise. Note

1] 1
that Hn(k ) = + 1 throughout the analysis. Hék )depends on the status

of the qth variable before, rather than after it is added or dropped.)
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]
The following formulae determine the matrix (Sij(k +1)> :

g (k'+1) _ 1
aq T )
qq
k) S (k')
'+1) _ T4 .
T I ) )=
Q4
(141) s (k)
'+ i .
ST b
aq
(')g (&) (k") (k")

(k'+1) (k') S . S . H. H . ]
513 =Sy T sqgk') — j<i<a
aq
(k')g (k'

g (&) o (k) _ Pig 3 e o
13 " P4 5 (K1) JTass

aq
(k')g (k)y (k") (k')
(k'+1) (k') S, S. H. I . .

This is equivalent, on adding a variable, to

L)
R (k'+1) _ Tqj
aJ R 3
aq
(k) (k')
R (k'+l)=R (k'+1) _ Tig aj
ij 13 R (k')
- aq
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or, on dropping a variable, to

g (&)
(k'+1) aJ
R_, = ;
ad R (k™)
q,9+n
(k) (k")
o (1) | (x) Ri,a4n  Fqj
13 1] S )
q,q+n

where the (g4n)-th column of the R matrix takes the place of the qth in
the S matrix when a variable is being added.
If the first k variables were included in the regression, then the

R matrix would be of the form.

- (k) - (k) (k) (k) (k) —
10 -S04 e By -s_, S1, ceiSpp 0 ...0
(k) (k) (k) (x) (k)
O l "Sk+l’k ) _Sn—l}k "Snk Skl ...Skk O en e O
k) (k) (k) (k) (k)
0... 0 %) ..
Sie1, kbl Sn-1, k41 Sn, kel Sk, Skex L 0
k) (k) (k) (k) (k)
0... 0 (
Sn-1, kel Sn-1,n-1 Sn,n-1 Sp-1,1 7 Shepx O 1
(k) (k) (k) (k) (k)
... 0
P Sn}k_*_l Sn,n—l Snn Snl ...Sm O e e ?J

In effect the program inverts the S matrix in place, proceeding from

pivot element to pivot element without rearranging rows and columns. Alsq,
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“ |
advantage 1s taken of the symmetry in carrying out calculations in the
lower triangle only.

At this point, a list of included or active variables, the mean-
squares due to regression and to error, the F-ratio, and the square of
the multiple correlation coefficient are printed. There are options for
printing the inverse matrix, the reduced sum of squares matrix, the
partial regression coefficients of the dependent variable on each of
the active variables, and the regression coefficients of the dependent

variable on the active wvariables.
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ON T RICAL REPRESENTATION OF THE GENERAL
SOLUTION OF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

By

Robert Silber

I. INTRODUCTION AND SUMMARY

We consider normal systems of first order, ordinary,
differential equations, i.e., we consider the system

&i = fi(t:YI:yZ:---:yn): i=1, 2,..., n, (S)

in which the dot indicates differentiation with respect to t.
Let the set of functions

Yi(t)TJnlinZJ"'Jnn)) i=1,2, ..., n,

be the gerneral solution to (s) in terms of the initial
time 7 and the initial values n5 of the y;.

Under certain conditions, such as those discussed, the
functions Y3 will be analytic at a selected point
(t*,T*,n1*,n2*,...,nn*) and will therefore be expressible
in Taylor's series in n+2 variables neighboring the point
(t*,T*,n1*,n2*,...,nn*). The information needed to calculate
the coefficients in this Taylor's series is the set of values
of the partial derivatives of the Yy at the point (t*,7%,m1%,

N2¥s v v smm*).

Within the numerical procedures discussed in Reference 3,
there is contained a method for obtaining the values of the
above partial derivatives, through any pre-specified order.

The method necessitates the use of a digital computer. 1In
writing Reference 3, this method was not given explicit mention,
because it was integrated into a more complex numerical process.
Since writing Reference 3, the author has come to realize that
perhaps the subject method is of sufficient interest to merit
an independent description. Thus, the purpose and content of
this paper is a description of the salient points of this
method; many of the troublesome details and minutiae are left
untreated, since they are all contained in Reference 3.
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IT. THE FUNDAMENTAL IDENTITIES

The entire procedure i1s based on two fundamental identities
satisfied by the functions Y.. Before writing the identities,

it will be convenlient to int%oduce abbreviated notation as

follows:
Y

Il

(Y1, Y2, ..., Yn),

il

N = (M1Mes «ovs Ny)-

Thus Y(t,T,ﬂ): (Yl (t)T,nlynZ;"') Un ):°°~:Yn(t:T;n1:n25 nn )'

The first of the fundamental identities is a conseguence

of the Y, being solutions to (s).

d

——'Yi(t,T,ﬂ) = fi(t:Y(t:T;ﬂ) ):
3t

1=1,2,...,0.

This 1s an identity in each of the n+2 arguments which
appear. In the event that each f4i 1s analytic at the point
(t,¥Y(t,7,m) ) and each Y3 is analytic at the point (t,7,7n),

the two sides of (1) represent the same analytic function,

entiation. Thus, for example, using the chain rule,

o%Y3 afy
> (t:T:n) = ___'(t:Y(t:T:n))
3t d¢
n ofy an
+ - (t:Y(t:T:ﬂ)) - (t:T:ﬂ):
jZIByJ ot

which, using (1), can be written

and
new identities can be obtained from (1) by unlimited differ-

“n (o, w(mn)
(t,T,ﬂ) = £,Y(t, 7,7
dt® dt
n Bfi
+ fj(t:Y(t:T:n)) - (t:Y(t,T,ﬂ)),
Jj=1 oy .
J
i=1,2, ,n
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Similarly,

32, D oary 3Y; 3
L (omm) = T = (6,3(5,7m) =2 (6,7a), ()
otoT jo1 993 oT
i=1, 2, ..., n,
and
d2Y3 n of3 an
(t:T:ﬂ) :E :—'— (t,Y(t,'T,T])) - (t,T;T)), (LI-)
B'CBT)k j=1 ayJ aﬂk
i,k = 1, 2, eeey NI

Clearly, by repeated differentiations, one can obtain
identities involving partial derivatives of higher orders.

The second of the two fundamental identities is a con-
sequence of the definition of the parameters TsMsN2ses5M, a8
behg "initial values."

Yi(T,T,n) =My i=1,2,...,?;_} (5)

As in (1), this is an identity in each of the n+l arguments
appearing, and both sides can be differentiated indefinitely at
points of analyticity. Hence,

oYy oYy
—gg'(T:T:n) +'7;;'(T:T:n) =0 ,

so that by (1) and (5),

3
— (T:T:ﬂ) = ‘fi(T:Y(T:T:n) = fi(T:n) (6)
T
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Also,

3Y,
g——'(T:T:ﬂ) = 6ik3 i, k = 1’ 2: sy N, (7)
Nk
where 6ik is the Kronecker delta.

Again, as in the case of Equation (1), further differ-
entiations can be performed, yielding identities involving
partial derivatives of progressively higher orders.

In the procedure to follow, Equations (1)-(7), and higher

order equations to be obtained through appropriate differen-~
tiations, will be used.

ITT. REFERENCE POINTS AND REFERENCE TRAJECTORIES

As was pointed out in the introduction, the aim of the
method belng described is the expansion of the functions
Yi’ i=1,2,...,n, in Taylor's series about the pre-specified
point (t%,7%,m1*,m2%,...,N4%). It is a clear necessity that
the functions Y. be analytic at this point. Analyticity is
also sufficient™for existence and convergence of the Taylor's
series neighboring the point of expansion, but for our method
we shall require further properties. To facilitate the dis-
cussions concerned with these properties, we introduce some
definitions.

Definition: A real solution of (s) over a real interval

[a,b] is a set @1,@2,...,¢g} of real-valued functions,
defined and differentiable o [a,b], and satisfying

91 (t) = £1(t,01 (£),02(t),....0n(t),

i=1, 2,..., n; t e [a:b]°

In keeping with our earlier abbreviated notation, we let
¢==(¢1,@2,_,.,¢n), F=(f 1, 05c04, fn), and write the above
equation

p(t) = £(t,9(t)), tela,bl,

where, of course, ¢ =(¢1,¢2,...,¢n). We shall refer to ¢
itself as the solution over [a,b].
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Definition: Suppose ¢ 1s a solution of s over [a,b]
The set

e(CP:a:b) = {CP(t):t€ [a:b]} )

which is a subset of n-dimensional space, is called the orbit
of ¢, over [a,b] . The set

I(p,a,b) = {(t, o(t)): te [a,p]},

which is a subset of (n+l) dimensional space, is called the
trajectory of 9, over [a,b]. A reference trajectory is a
trajectory J(9,a,b) of a solution ¢ over an interval [a,b]
with the following property:

At each point (t, o(t)) € J(9,a,b), each of the functions
£i5 i=1,2,...,n, in (s), is analytic¥,.

A real reference trajectory is a reference trajectory
3($, a,b) for which ¢is real-valued in each component.
Analyticity, however, is still taken in the complex sense.

(cf. the definition below.)

From the theory of differential equations (References 1
and 2), it is known that if (T,nl,nz,...,nn) is a point at
which each function f,, i=1,2,...,n, in (s), is analytic,
then there exists a uﬁlque complex function ¢ of the complex
varilable z which 1s analytic in a complex neighborhood N of T,
which satisfies ¢(7) = n and which solves (s% at each point
of N.

Definition: A point (t¥,7T¥,mi%,m2%,...,Mn*¥) shall be
calléed a reference point if the following conditions are met:

¥ f, is analytic at (t,@1(t),@2(t),...,¢n(t)), if £, is

expressible by a power series

Ezzc(i)voV1V2 coe Vn(ZO—t)vO(Z1-@1(t))V1---(Zn-¢n(t))vn: v

which is convergant throughout an (n+l) complex dimensional
neighborhood of (t,e(t)), and represents f; there.
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(i) Each fi’ i=1,2,...,n, is analytic at
(t*,nl*,ng*,...,nn*) and bounded on some complex neighborhood

of that point.

(11) Let ¢ be the unique solution of (s), analytic
at 7%, and satisfying @(t*) =n*, Then ¢ has an analytic
continuation § along the real axis, from 7% to t*,

(1i1) J(F,m*,t*) (or J(F,6%,7%), if t*¥T¥) is a
reference trajectory.

From this definiti-n, it follows (for example, from
theorem 8.2 in chapter one of Reference 1) that if
(t*,T*,n1*,n2*,...,nn*) is a reference point, then the
general solution Y(t,T,nl,ng,...,nn) mentioned in the intro-

duction, is well—defined and analytic at each point (t,T,n)
such that (7,7m) € J(9,7%,t*) and te[T*,t*], and satisfies

Y(t,7*%,n*%) = $(t), for each te[T¥,t*¥]. Thus, each of the
preceeding differentiations of identities 1s justified.

In practice, the system (s) has the property that its
solutions are real if t is real, and if the initial values
are real; consequently, the points in J(9,7%,t*) will have
real components instead of complex components. Nevertheless,
a complex, rather than real, notion of analyticity must be
retained, in order to justify the differentiations on which

1 * 3 s
the numerical proccdure is to be based.

IV. NUMERICAL CALCULATIONS

Let (t*:7*:7h*:7b*:-~~:nn*) be a given reference point,
and let o9(t) = Y(t,7*,m¥), te [T%,t*], as in the preceding
definitions. Let = g(3,7%,t*), the reference trajectory
defined by, and corresponding to, the given reference point.

By numerical integration on a digital computer, points

of J¥% can be calculated at selected values of t in [7*,t*] ,
so that we assume ¥ to be numerically known.

We now define an nx n matrix function of time. Iet F
be the matrix with elements f;j defined by

ofy -
fi5(t) = — (t,0(t))s t e [7%,t%];
BYJ
i, j = 1: 25 «ess N
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In keeping with popular terminology, we shall call F the
transition matrix of the system (s) along the trajectory;ﬁ.

Notice that since (s) is given, the functions

35

— (t:ylxy2:°°~:yn)

oY j

can be obtained by direct differentiation of the right hand
Further, since d
assume that by further calculations, F is numerically known <
for each te [7*%,8%7 .

sides of (s).

* is numerically known, we can

Next, we define an nx(n+l) matrix function of time. Let
X be the matrix with elements Xij defined by

Yy
XlJ(t) = — (t,7*n*);
an
(v) - 22 )
X;:(t) = — (L,7*¥n¥*);
= oT

te[r*,t%], i,j =1,2,...,n ,

te [7*%,6%], i =1,2,...,n,

= n+1l. A

If, in Equations (3) and (4), one sets (7,n) = (7%,n%),
then each side of the equations becomes a function of t alone, ¢
and partial derivatives with respect to t become total. Further-

more, the equations, taken over all indices are equivalent to
the single matrix equation

X =

Furthermore, Equations (6) and (7)

496

FX

o o |

o ..

0 0 ...
1 o .

0] 1...
0 o ...

nth column

(8)
give the entries of X(7%);
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-fy(T1%,m%)
-fa(T*:ﬂ*)
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Direct numerical integration of (8) from t = 7% to t = t*,
using the initial value given by (9), will yield, with one
exception, all first partials needed for the Taylor's series.
The exception is

ézi(
ot

but this can be calculated directly from the point (t*,3(t*) )
in J* and the right side of Equation (1).

t*,T*,p*), i=1,2, ..., n,

The method extends readily to higher order partials. The
analogue of (8) must be obtained by differentiations of (3
and (4), and the analogue of (9) by differentiations of (6) and
(7). The new matrix equations will be of higher dimensions
since there are many more second partials than first partials.
The involved equations and determinations are treated in detail
in reference three, and so are not taken up here. It is felt
that a detailed description for first-order partials is suffi-
cient to convey the bvasic ideas of the method.
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